IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v126y2014i1p203-216.html
   My bibliography  Save this article

Global and regional trends in greenhouse gas emissions from livestock

Author

Listed:
  • Dario Caro
  • Steven Davis
  • Simone Bastianoni
  • Ken Caldeira

Abstract

Following IPCC guidelines ( IPCC 2006 ), we estimate greenhouse gas emissions related to livestock in 237 countries and 11 livestock categories during the period 1961–2010. We find that in 2010 emissions of methane and nitrous oxide related to livestock worldwide represented approximately 9 % of total greenhouse gas (GHG) emissions. Global GHG emissions from livestock increased by 51 % during the analyzed period, mostly due to strong growth of emissions in developing (Non-Annex I) countries (+117 %). In contrast, developed country (Annex I) emissions decreased (−23 %). Beef and dairy cattle are the largest source of livestock emissions (74 % of global livestock emissions). Since developed countries tend to have lower CO 2 -equivalent GHG emissions per unit GDP and per quantity of product generated in the livestock sector, the amount of wealth generated per unit GHG emitted from the livestock sector can be increased by improving both livestock farming practices in developing countries and the overall state of economic development. Our results reveal important details of how livestock production and associated GHG emissions have occurred in time and space. Discrepancies with higher tiers, demonstrate the value of more detailed analyses, and discourage over interpretation of smaller-scale trends in the Tier 1 results, but do not undermine the value of global Tier 1 analysis. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Dario Caro & Steven Davis & Simone Bastianoni & Ken Caldeira, 2014. "Global and regional trends in greenhouse gas emissions from livestock," Climatic Change, Springer, vol. 126(1), pages 203-216, September.
  • Handle: RePEc:spr:climat:v:126:y:2014:i:1:p:203-216
    DOI: 10.1007/s10584-014-1197-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1197-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1197-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dave S. Reay & Eric A. Davidson & Keith A. Smith & Pete Smith & Jerry M. Melillo & Frank Dentener & Paul J. Crutzen, 2012. "Global agriculture and nitrous oxide emissions," Nature Climate Change, Nature, vol. 2(6), pages 410-416, June.
    2. Rajneesh Narula & John Dunning, 2000. "Industrial Development, Globalization and Multinational Enterprises: New Realities for Developing Countries," Oxford Development Studies, Taylor & Francis Journals, vol. 28(2), pages 141-167.
    3. Engstrom, Rebecka & Wadeskog, Anders & Finnveden, Goran, 2007. "Environmental assessment of Swedish agriculture," Ecological Economics, Elsevier, vol. 60(3), pages 550-563, January.
    4. Rose, Steven K. & Lee, Huey-Lin, 2008. "Non-CO2 Greenhouse Gas Emissions Data for Climate Change Economic Analysis," Working papers 283461, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Rose, Steven & Lee, Huey-Lin, 2008. "Non-CO2 Greenhouse Gas Emissions Data for Climate Change Economic Analysis," GTAP Working Papers 2604, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. repec:fpr:2020br:16(6 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ortega, David L. & Sun, Jiayu & Lin, Wen, 2022. "Identity labels as an instrument to reduce meat demand and encourage consumption of plant based and cultured meat alternatives in China," Food Policy, Elsevier, vol. 111(C).
    2. Hongpeng Guo & Zixu Su & Xiao Yang & Shuang Xu & Hong Pan, 2022. "Greenhouse Gas Emissions from Beef Cattle Breeding Based on the Ecological Cycle Model," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    3. Xiao Chen & Tao Tao & Jiaxin Zhou & Helong Yu & Hongliang Guo & Hongbing Chen, 2023. "Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    4. Yixuan Guo & Yidong Wang & Shufeng Chen & Shunan Zheng & Changcheng Guo & Dongmei Xue & Yakov Kuzyakov & Zhong-Liang Wang, 2019. "Inventory of Spatio-Temporal Methane Emissions from Livestock and Poultry Farming in Beijing," Sustainability, MDPI, vol. 11(14), pages 1-11, July.
    5. Pengjie Lu & Guanghua Qiao, 2024. "The Influence of Climate Perception and Low-Carbon Awareness on the Emission Reduction Willingness of Decision Makers in Large-Scale Dairy Farming: Evidence from the Midwest of Inner Mongolia, China," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
    6. Saida Daly & Nihel Benali & Manal Yagoub, 2022. "Financing Sustainable Development, Which Factors Can Interfere?: Empirical Evidence from Developing Countries," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    7. Khatri-Chhetri, Arun & Sapkota, Tek B. & Maharjan, Sofina & Cheerakkollil Konath, Noufa & Shirsath, Paresh, 2023. "Agricultural emissions reduction potential by improving technical efficiency in crop production," Agricultural Systems, Elsevier, vol. 207(C).
    8. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    9. Tiantian Su & Cuixia Li, 2024. "Has the Digital Economy Boosted Carbon Reduction in Livestock Farming in China?," Agriculture, MDPI, vol. 14(9), pages 1-23, September.
    10. Plaza, Pablo Ignacio & Lambertucci, Sergio Agustín, 2022. "Mitigating GHG emissions: A global ecosystem service provided by obligate scavenging birds," Ecosystem Services, Elsevier, vol. 56(C).
    11. Andrew J Tanentzap & Anthony Lamb & Susan Walker & Andrew Farmer, 2015. "Resolving Conflicts between Agriculture and the Natural Environment," PLOS Biology, Public Library of Science, vol. 13(9), pages 1-13, September.
    12. Ran Li & Guixia Qian, 2021. "Spatial and Temporal Evolution of Dairy Farming Coordination between Economy and Ecology in China," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    13. Leszek Sieczko & Zofia Koloszko-Chomentowska & Anna Sieczko, 2024. "Variability of Greenhouse Gas Emissions in Relation to Economic and Ecological Indicators from Cattle Farms," Energies, MDPI, vol. 17(8), pages 1-18, April.
    14. Nadiia Charkovska & Joanna Horabik-Pyzel & Rostyslav Bun & Olha Danylo & Zbigniew Nahorski & Matthias Jonas & Xu Xiangyang, 2019. "High-resolution spatial distribution and associated uncertainties of greenhouse gas emissions from the agricultural sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 881-905, August.
    15. Kastratovic, Radovan, 2019. "Impact of foreign direct investment on greenhouse gas emissions in agriculture of developing countries," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.
    16. Tianyi Cai & Degang Yang & Xinhuan Zhang & Fuqiang Xia & Rongwei Wu, 2018. "Study on the Vertical Linkage of Greenhouse Gas Emission Intensity Change of the Animal Husbandry Sector between China and Its Provinces," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    17. Sara Rajic & Vesna Đorđević & Igor Tomasevic & Ilija Djekic, 2022. "The role of food systems in achieving the sustainable development goals: Environmental perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 988-1001, March.
    18. Giuseppe Di Vita & Raffaele Zanchini & Rachele De Cianni & Liam Pippinato & Teresina Mancuso & Filippo Brun, 2024. "Sustainable Livestock Farming in the European Union: A Study on Beef Farms in NUTS 2 Regions," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    19. Daniel H. Pope & Johan O. Karlsson & Phillip Baker & David McCoy, 2021. "Examining the Environmental Impacts of the Dairy and Baby Food Industries: Are First-Food Systems a Crucial Missing Part of the Healthy and Sustainable Food Systems Agenda Now Underway?," IJERPH, MDPI, vol. 18(23), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    2. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    3. Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    5. Arora, Vipin & Cai, Yiyong & Jones, Ayaka, 2016. "The national and international impacts of coal-to-gas switching in the Chinese power sector," Energy Economics, Elsevier, vol. 60(C), pages 416-426.
    6. Fernández-Amador, Octavio & Francois, Joseph & Oberdabernig, Doris & Tomberger, Patrick, 2018. "The methane footprint of nations: Evidence from global panel data," Papers 1102, World Trade Institute.
    7. Eskeland, Gunnar S. & Rive, Nathan A. & Mideksa, Torben K., 2012. "Europe’s climate goals and the electricity sector," Energy Policy, Elsevier, vol. 41(C), pages 200-211.
    8. Hussein, Zekarias & Hertel, Thomas W. & Golub, Alla, 2013. "Climate change, mitigation policy, and poverty in developing countries," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150732, Agricultural and Applied Economics Association.
    9. Haddad, Salwa & Escobar, Neus & Bruckner, Martin & Britz, Wolfgang, 2022. "Promoting extensive cattle production in the European Union has major implications for global agricultural trade and climate change," Discussion Papers 324710, University of Bonn, Institute for Food and Resource Economics.
    10. Lorenza Campagnolo & Carlo Carraro & Fabio Eboli & Luca Farnia & Ramiro Parrado & Roberta Pierfederici, 2018. "The Ex-Ante Evaluation of Achieving Sustainable Development Goals," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(1), pages 73-116, February.
    11. Vringer, Kees & Benders, René & Wilting, Harry & Brink, Corjan & Drissen, Eric & Nijdam, Durk & Hoogervorst, Nico, 2010. "A hybrid multi-region method (HMR) for assessing the environmental impact of private consumption," Ecological Economics, Elsevier, vol. 69(12), pages 2510-2516, October.
    12. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.
    13. Haddad, Salwa & Escobar, Neus & Bruckner, Martin & Britz, Wolfgang, 2019. "Global land use impacts from a subsidy on grassland-based ruminant livestock production in the European Union," Conference papers 333082, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Delin, Huang, 2012. "Policy Implications and Mitigation Potential in China Agricultural Greenhouse Gas Emission," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 124848, International Association of Agricultural Economists.
    15. Frank van Tongeren & Robert Koopman & Stephen Karingi & John Reilly & Joseph Francois, 2021. "Back to the Future: A 25-Year Retrospective on GTAP and the Shaping of a New Agenda," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 3, pages 41-93, World Scientific Publishing Co. Pte. Ltd..
    16. Anthony Black, 2009. "Location, Automotive Policy, and Multinational Strategy: The Position of South Africa in the Global Industry since 1995," Growth and Change, Wiley Blackwell, vol. 40(3), pages 483-512, September.
    17. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    18. Ruben Molina Martinez & Oscar Hugo Pedraza Rendon & Jorge Luis Alcaraz Vargas, 2012. "Multinationalization Of Mexican Companies, La Multinacionalizacion De La Empresa Mexicana," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 5(5), pages 71-85.
    19. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    20. Argentino Pessoa, 2008. "Multinational Corporations, Foreign Investment, and Royalties and License Fees: Effects on Host-Country Total Factor Productivity," Notas Económicas, Faculty of Economics, University of Coimbra, issue 28, pages 6-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:126:y:2014:i:1:p:203-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.