IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v119y2013i3p841-854.html
   My bibliography  Save this article

Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire

Author

Listed:
  • P. Läderach
  • A. Martinez-Valle
  • G. Schroth
  • N. Castro

Abstract

Ghana and Côte d’Ivoire are the world’s leading cocoa (Thebroma cacao) producing countries; together they produce 53 % of the world’s cocoa. Cocoa contributes 7.5 % of the Gross Domestic Product (GDP) of Côte d’Ivoire and 3.4 % of that of Ghana and is an important cash crop for the rural population in the forest zones of these countries. If progressive climate change affected the climatic suitability for cocoa in West Africa, this would have implications for global cocoa output as well as the national economies and farmer livelihoods, with potential repercussions for forests and natural habitat as cocoa growing regions expand, shrink or shift. The objective of this paper is to present future climate scenarios for the main cocoa growing regions of Ghana and Côte d’Ivoire and to predict their impact on the relative suitability of these regions for growing cocoa. These analyses are intended to support the respective countries and supply chain actors in developing strategies for reducing the vulnerability of the cocoa sector to climate change. Based on the current distribution of cocoa growing areas and climate change predictions from 19 Global Circulation Models, we predict changes in relative climatic suitability for cocoa for 2050 using an adapted MAXENT model. According to the model, some current cocoa producing areas will become unsuitable (Lagunes and Sud-Comoe in Côte d’Ivoire) requiring crop change, while other areas will require adaptations in agronomic management, and in yet others the climatic suitability for growing cocoa will increase (Kwahu Plateu in Ghana and southwestern Côte d’Ivoire). We recommend the development of site-specific strategies to reduce the vulnerability of cocoa farmers and the sector to future climate change. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • P. Läderach & A. Martinez-Valle & G. Schroth & N. Castro, 2013. "Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire," Climatic Change, Springer, vol. 119(3), pages 841-854, August.
  • Handle: RePEc:spr:climat:v:119:y:2013:i:3:p:841-854
    DOI: 10.1007/s10584-013-0774-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0774-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0774-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    2. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Götz Schroth & Peter Läderach & Armando Isaac Martinez-Valle & Christian Bunn, 2017. "From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 903-927, August.
    2. Hirons, M. & Robinson, E. & McDermott, C. & Morel, A. & Asare, R. & Boyd, E. & Gonfa, T. & Gole, T.W. & Malhi, Y. & Mason, J. & Norris, K., 2018. "Understanding Poverty in Cash-crop Agro-forestry Systems: Evidence from Ghana and Ethiopia," Ecological Economics, Elsevier, vol. 154(C), pages 31-41.
    3. Peter Läderach & Julian Ramirez–Villegas & Carlos Navarro-Racines & Carlos Zelaya & Armando Martinez–Valle & Andy Jarvis, 2017. "Climate change adaptation of coffee production in space and time," Climatic Change, Springer, vol. 141(1), pages 47-62, March.
    4. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    5. Abdulai, Issaka & Hoffmann, Munir P. & Jassogne, Laurence & Asare, Richard & Graefe, Sophie & Tao, Hsiao-Hang & Muilerman, Sander & Vaast, Philippe & Van Asten, Piet & Läderach, Peter & Rötter, Reimun, 2020. "Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana," Agricultural Systems, Elsevier, vol. 181(C).
    6. Viviana Ceccarelli & Tobias Fremout & Eduardo Chavez & David Argüello & Rey Gastón Loor Solórzano & Ignacio Antonio Sotomayor Cantos & Evert Thomas, 2024. "Vulnerability to climate change of cultivated and wild cacao in Ecuador," Climatic Change, Springer, vol. 177(7), pages 1-22, July.
    7. Tosto, Ambra & Morales, Alejandro & Rahn, Eric & Evers, Jochem B. & Zuidema, Pieter A. & Anten, Niels P.R., 2023. "Simulating cocoa production: A review of modelling approaches and gaps," Agricultural Systems, Elsevier, vol. 206(C).
    8. Kouassi Jean-Luc & Wandan Narcisse & Mbow Cheikh, 2022. "Observed climate trends, perceived impacts and community adaptation practices in Côte d’Ivoire," Environmental & Socio-economic Studies, Sciendo, vol. 10(3), pages 43-58, September.
    9. Wongnaa, Camillus Abawiera & Babu, Suresh, 2020. "Building resilience to shocks of climate change in Ghana's cocoa production and its effect on productivity and incomes," Technology in Society, Elsevier, vol. 62(C).
    10. Priscilla Wainaina & Peter A. Minang & Lalisa Duguma & Kennedy Muthee, 2021. "A Review of the Trade-Offs across Different Cocoa Production Systems in Ghana," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    11. Y. R. Waarts & V. Janssen & R. Aryeetey & D. Onduru & D. Heriyanto & S. Tin Aprillya & A. N’Guessan & L. Courbois & D. Bakker & V. J. Ingram, 2021. "Multiple pathways towards achieving a living income for different types of smallholder tree-crop commodity farmers," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1467-1496, December.
    12. Kirstie Cadger & Andrews K. Quaicoo & Evans Dawoe & Marney E. Isaac, 2016. "Development Interventions and Agriculture Adaptation: A Social Network Analysis of Farmer Knowledge Transfer in Ghana," Agriculture, MDPI, vol. 6(3), pages 1-14, July.
    13. Fred A. Yamoah & James S. Kaba & David Botchie & Joseph Amankwah-Amoah, 2021. "Working towards Sustainable Innovation for Green Waste Benefits: The Role of Awareness of Consequences in the Adoption of Shaded Cocoa Agroforestry in Ghana," Sustainability, MDPI, vol. 13(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingling Hou & Jikun Huang & Jinxia Wang, 2017. "Early warning information, farmers’ perceptions of, and adaptations to drought in China," Climatic Change, Springer, vol. 141(2), pages 197-212, March.
    2. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    3. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    6. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    7. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    8. Hongli Wang & Yongxiang Zhang & Xuemei Shao, 2021. "A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China," Climatic Change, Springer, vol. 165(1), pages 1-16, March.
    9. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    10. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    11. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    12. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    13. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    14. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    15. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    16. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    17. Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
    18. Maria Waldinger, 2015. "The effects of climate change on internal and international migration: implications for developing countries," GRI Working Papers 192, Grantham Research Institute on Climate Change and the Environment.
    19. Nyadzi, Emmanuel, 2016. "Climate Variability Since 1970 and Farmers’ Observations in Northern Ghana," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(2).
    20. Chang, Yen-Chiang & Wang, Nannan, 2010. "Environmental regulations and emissions trading in China," Energy Policy, Elsevier, vol. 38(7), pages 3356-3364, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:119:y:2013:i:3:p:841-854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.