IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v113y2012i3p981-999.html
   My bibliography  Save this article

Modeling the impacts of climate change on nitrogen retention in a 4th order stream

Author

Listed:
  • H. Boyacioglu
  • T. Vetter
  • V. Krysanova
  • M. Rode

Abstract

No abstract is available for this item.

Suggested Citation

  • H. Boyacioglu & T. Vetter & V. Krysanova & M. Rode, 2012. "Modeling the impacts of climate change on nitrogen retention in a 4th order stream," Climatic Change, Springer, vol. 113(3), pages 981-999, August.
  • Handle: RePEc:spr:climat:v:113:y:2012:i:3:p:981-999
    DOI: 10.1007/s10584-011-0369-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0369-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0369-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagenschein, Dierk & Rode, Michael, 2008. "Modelling the impact of river morphology on nitrogen retention—A case study of the Weisse Elster River (Germany)," Ecological Modelling, Elsevier, vol. 211(1), pages 224-232.
    2. Richard B. Alexander & Richard A. Smith & Gregory E. Schwarz, 2000. "Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico," Nature, Nature, vol. 403(6771), pages 758-761, February.
    3. Rode, Michael & Suhr, Ursula & Wriedt, Gunter, 2007. "Multi-objective calibration of a river water quality model—Information content of calibration data," Ecological Modelling, Elsevier, vol. 204(1), pages 129-142.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagenschein, Dierk & Rode, Michael, 2008. "Modelling the impact of river morphology on nitrogen retention—A case study of the Weisse Elster River (Germany)," Ecological Modelling, Elsevier, vol. 211(1), pages 224-232.
    2. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    3. Park, Richard A. & Clough, Jonathan S. & Wellman, Marjorie Coombs, 2008. "AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems," Ecological Modelling, Elsevier, vol. 213(1), pages 1-15.
    4. Liem Tran & Robert O’Neill & Elizabeth Smith & Randall Bruins & Carol Harden, 2013. "Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1601-1617, March.
    5. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    6. Ruibin Zhang & Xin Qian & Xingcheng Yuan & Rui Ye & Bisheng Xia & Yulei Wang, 2012. "Simulation of Water Environmental Capacity and Pollution Load Reduction Using QUAL2K for Water Environmental Management," IJERPH, MDPI, vol. 9(12), pages 1-18, December.
    7. Xuedong Liang & Dongyang Si & Jing Xu, 2018. "Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    8. Md Jahangir Alam & Dushmanta Dutta, 2016. "A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5455-5478, November.
    9. Shang, Xiao & Wang, Xinze & Zhang, Dalei & Chen, Weidong & Chen, Xuechu & Kong, Hainan, 2012. "An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale," Ecological Modelling, Elsevier, vol. 226(C), pages 1-10.
    10. Greenhalgh, Suzie & Faeth, Paul, 2001. "A Water Quality Strategy For The Mississippi River Basin And The Gulf Of Mexico," 2001 Annual meeting, August 5-8, Chicago, IL 20528, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Claassen, Roger & Aillery, Marcel P. & Nickerson, Cynthia J., 2007. "Integrating Commodity and Conservation Programs: Design Options and Outcomes," Economic Research Report 6703, United States Department of Agriculture, Economic Research Service.
    12. Lu, Jun & Gong, Dongqin & Shen, Yena & Liu, Mei & Chen, Dingjiang, 2013. "An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 79-88.
    13. Gowda, Prasanna H. & Mulla, David J. & Jaynes, Dan B., 2008. "Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States," Agricultural Water Management, Elsevier, vol. 95(5), pages 616-624, May.
    14. Lin, Laurence & Davis, Lisa & Cohen, Sagy & Chapman, Elise & Edmonds, Jennifer W., 2016. "The influence of geomorphic unit spatial distribution on nitrogen retention and removal in a large river," Ecological Modelling, Elsevier, vol. 336(C), pages 26-35.
    15. André Fonseca & Cidália Botelho & Rui A. R. Boaventura & Vítor J. P. Vilar, 2024. "Evaluating the Effects of Parameter Uncertainty on River Water Quality Predictions," Resources, MDPI, vol. 13(8), pages 1-19, July.
    16. Schuwirth, Nele & Acuña, Vicenç & Reichert, Peter, 2011. "Development of a mechanistic model (ERIMO-I) for analyzing the temporal dynamics of the benthic community of an intermittent Mediterranean stream," Ecological Modelling, Elsevier, vol. 222(1), pages 91-104.
    17. Haas, Marcelo B. & Guse, Björn & Pfannerstill, Matthias & Fohrer, Nicola, 2015. "Detection of dominant nitrate processes in ecohydrological modeling with temporal parameter sensitivity analysis," Ecological Modelling, Elsevier, vol. 314(C), pages 62-72.
    18. Bernd Klauer & Michael Rode & Johannes Schiller & Uwe Franko & Melanie Mewes, 2012. "Decision Support for the Selection of Measures according to the Requirements of the EU Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 775-798, February.
    19. Scharfe, Mirco & Callies, Ulrich & Blöcker, Gerd & Petersen, Wilhelm & Schroeder, Friedhelm, 2009. "A simple Lagrangian model to simulate temporal variability of algae in the Elbe River," Ecological Modelling, Elsevier, vol. 220(18), pages 2173-2186.
    20. Wilfred M. Wollheim & Tamara K. Harms & Andrew L. Robison & Lauren E. Koenig & Ashley M. Helton & Chao Song & William B. Bowden & Jacques C. Finlay, 2022. "Superlinear scaling of riverine biogeochemical function with watershed size," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:113:y:2012:i:3:p:981-999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.