IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p529-d132125.html
   My bibliography  Save this article

Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy

Author

Listed:
  • Xuedong Liang

    (The Economy and Enterprise Development Institute, Sichuan University, Chengdu 610065, China)

  • Dongyang Si

    (The Economy and Enterprise Development Institute, Sichuan University, Chengdu 610065, China)

  • Jing Xu

    (The Economy and Enterprise Development Institute, Sichuan University, Chengdu 610065, China)

Abstract

A sustainable hydropower development was developed by using the information entropy and the Brusselator principle and was applied to the hydropower data of China. Macro social economic and ecological environmental viewpoints were taken into account. The entropy change of each subsystem in a calendar year is analyzed to evaluate Chinese sustainable development capacity. It is found that the established model can effectively reflect the actual changes of sustainable development levels through the entropy change reaction system. Meanwhile, this model can demonstrate clearly how those indicators impact on the sustainable hydropower development and fill the absence of existing studies on sustainable hydropower development.

Suggested Citation

  • Xuedong Liang & Dongyang Si & Jing Xu, 2018. "Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:529-:d:132125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quaranta, Emanuele & Revelli, Roberto, 2015. "Output power and power losses estimation for an overshot water wheel," Renewable Energy, Elsevier, vol. 83(C), pages 979-987.
    2. Glasnovic, Zvonimir & Margeta, Jure, 2011. "Vision of total renewable electricity scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1873-1884, May.
    3. Hien Thanh Nguyen & Ty Huu Pham & Lisa Lobry de Bruyn, 2017. "Impact of Hydroelectric Dam Development and Resettlement on the Natural and Social Capital of Rural Livelihoods in Bo Hon Village in Central Vietnam," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    4. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    5. Andreas Lindström & Audun Ruud, 2017. "Whose Hydropower? From Conflictual Management into an Era of Reconciling Environmental Concerns; a Retake of Hydropower Governance towards Win-Win Solutions?," Sustainability, MDPI, vol. 9(7), pages 1-18, July.
    6. Jager, Henriëtte I. & Efroymson, Rebecca A. & Opperman, Jeff J. & Kelly, Michael R., 2015. "Spatial design principles for sustainable hydropower development in river basins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 808-816.
    7. Richard B. Alexander & Richard A. Smith & Gregory E. Schwarz, 2000. "Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico," Nature, Nature, vol. 403(6771), pages 758-761, February.
    8. Capik, Mehmet & Osman Yılmaz, Ali & Cavusoglu, İbrahim, 2012. "Hydropower for sustainable energy development in Turkey: The small hydropower case of the Eastern Black Sea Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6160-6172.
    9. Yan Zhang, 2017. "Accelerating Sustainability by Hydropower Development in China: The Story of HydroLancang," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    10. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    11. Weiyao Tang & Zongmin Li & Yan Tu, 2018. "Sustainability Risk Evaluation for Large-Scale Hydropower Projects with Hybrid Uncertainty," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    12. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    13. Dong Hee Suh, 2018. "An Entropy Approach to Regional Differences in Carbon Dioxide Emissions: Implications for Ethanol Usage," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Huanhuan & Xu, Beibei & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Aggidis, George A. & Zhang, Jingjing & Patelli, Edoardo, 2020. "Transient safety assessment and risk mitigation of a hydroelectric generation system," Energy, Elsevier, vol. 196(C).
    2. Nauman Riyaz Maldar & Cheng Yee Ng & Lee Woen Ean & Elif Oguz & Ahmad Fitriadhy & Hooi Siang Kang, 2020. "A Comparative Study on the Performance of a Horizontal Axis Ocean Current Turbine Considering Deflector and Operating Depths," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    3. Qingzhen Zhang & Wenzhe Tang & Jersey Liu & Colin F. Duffiel & Felix Kin Peng Hui & Lihai Zhang & Xuteng Zhang, 2018. "Improving Design Performance by Alliance between Contractors and Designers in International Hydropower EPC Projects from the Perspective of Chinese Construction Companies," Sustainability, MDPI, vol. 10(4), pages 1-24, April.
    4. Zeeshan Ali Siddiqui & Mohd. Haroon, 2024. "Ranking of components for reliability estimation of CBSS: an application of entropy weight fuzzy comprehensive evaluation model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2438-2452, June.
    5. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    6. Zifeng Liang & Manli Zhang & Qingduo Mao & Bingxin Yu & Ben Ma, 2018. "Improvement of Eco-Efficiency in China: A Comparison of Mandatory and Hybrid Environmental Policy Instruments," IJERPH, MDPI, vol. 15(7), pages 1-20, July.
    7. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    8. Xiaoye Jin & Meiying Li & Fansheng Meng, 2019. "Comprehensive Evaluation of the New Energy Power Generation Development at the Regional Level: An Empirical Analysis from China," Energies, MDPI, vol. 12(23), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    2. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    3. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    4. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    5. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    6. Liu, Jian & Zuo, Jian & Sun, Zhiyu & Zillante, George & Chen, Xianming, 2013. "Sustainability in hydropower development—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 230-237.
    7. Cyril Anak John & Lian See Tan & Jully Tan & Peck Loo Kiew & Azmi Mohd Shariff & Hairul Nazirah Abdul Halim, 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    8. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    9. Sharma, Naveen Kumar & Tiwari, Prashant Kumar & Sood, Yog Raj, 2013. "A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 460-470.
    10. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    12. Cho, Young Sang & Kim, Jeom Han & Hong, Seong Uk & Kim, Yuri, 2012. "LCA application in the optimum design of high rise steel structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3146-3153.
    13. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    14. Sgarbi, Felipe de Albuquerque & Uhlig, Alexandre & Simões, André Felipe & Goldemberg, José, 2019. "An assessment of the socioeconomic externalities of hydropower plants in Brazil," Energy Policy, Elsevier, vol. 129(C), pages 868-879.
    15. Bilgili, Mehmet & Bilirgen, Harun & Ozbek, Arif & Ekinci, Firat & Demirdelen, Tugce, 2018. "The role of hydropower installations for sustainable energy development in Turkey and the world," Renewable Energy, Elsevier, vol. 126(C), pages 755-764.
    16. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    17. Rostami, Raheleh & Khoshnava, Seyed Meysam & Lamit, Hasanuddin & Streimikiene, Dalia & Mardani, Abbas, 2017. "An overview of Afghanistan's trends toward renewable and sustainable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1440-1464.
    18. Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Bilgili, Faik & Lorente, Daniel Balsalobre & Kuşkaya, Sevda & Ünlü, Fatma & Gençoğlu, Pelin & Rosha, Pali, 2021. "The role of hydropower energy in the level of CO2 emissions: An application of continuous wavelet transform," Renewable Energy, Elsevier, vol. 178(C), pages 283-294.
    20. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:529-:d:132125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.