IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i18p2173-2186.html
   My bibliography  Save this article

A simple Lagrangian model to simulate temporal variability of algae in the Elbe River

Author

Listed:
  • Scharfe, Mirco
  • Callies, Ulrich
  • Blöcker, Gerd
  • Petersen, Wilhelm
  • Schroeder, Friedhelm

Abstract

We present a five-year (1997–2001) numerical simulation of daily mean chlorophyll a concentrations at station Geesthacht Weir on the lower Elbe River (Germany) using an extremely simple Lagrangian model driven by (a) water discharge, global radiation, water temperature, and (b) silica observations at station Schmilka in the upper reach of the Elbe River. Notwithstanding the lack of many mechanistic details, the model is able to reproduce observed chlorophyll a variability surprisingly well, including a number of sharp valleys and ascents/descents in the observed time series. The model's success is based on the assumption of three key effects: prevailing light conditions, sporadic limitation of algal growth due to lack of silica and algae loss rates that increase above an empirically specified temperature threshold of 20°C. Trimmed-down model versions are studied to analyse the model's success in terms of these mechanisms.In each of the five years the model consistently fails, however, to properly simulate characteristic steep increases of chlorophyll a concentrations after pronounced spring minima. Curing this model deficiency by global model re-calibration was found to be impossible. However, suspension of silica consumption by algae for up to 10 days in spring is shown to serve as a successful placeholder for processes that are disregarded in the model but apparently play an important role in the distinctly marked period of model failure. For the remainder of the year the very simple model was found to be adequate.

Suggested Citation

  • Scharfe, Mirco & Callies, Ulrich & Blöcker, Gerd & Petersen, Wilhelm & Schroeder, Friedhelm, 2009. "A simple Lagrangian model to simulate temporal variability of algae in the Elbe River," Ecological Modelling, Elsevier, vol. 220(18), pages 2173-2186.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:18:p:2173-2186
    DOI: 10.1016/j.ecolmodel.2009.04.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009003147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.04.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Callies, U. & Scharfe, M. & Ratto, M., 2008. "Calibration and uncertainty analysis of a simple model of silica-limited diatom growth in the Elbe River," Ecological Modelling, Elsevier, vol. 213(2), pages 229-244.
    2. Rode, Michael & Suhr, Ursula & Wriedt, Gunter, 2007. "Multi-objective calibration of a river water quality model—Information content of calibration data," Ecological Modelling, Elsevier, vol. 204(1), pages 129-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xiaodong & Zhang, Hongjian & Tao, Xiaolei, 2013. "Predicting the short-time-scale variability of chlorophyll a in the Elbe River using a Lagrangian-based multi-criterion analog model," Ecological Modelling, Elsevier, vol. 250(C), pages 279-286.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Richard A. & Clough, Jonathan S. & Wellman, Marjorie Coombs, 2008. "AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems," Ecological Modelling, Elsevier, vol. 213(1), pages 1-15.
    2. Ruibin Zhang & Xin Qian & Xingcheng Yuan & Rui Ye & Bisheng Xia & Yulei Wang, 2012. "Simulation of Water Environmental Capacity and Pollution Load Reduction Using QUAL2K for Water Environmental Management," IJERPH, MDPI, vol. 9(12), pages 1-18, December.
    3. Turley, Marianne C. & Ford, E. David, 2009. "Definition and calculation of uncertainty in ecological process models," Ecological Modelling, Elsevier, vol. 220(17), pages 1968-1983.
    4. Majid Mirzaei & Yuk Huang & Ahmed El-Shafie & Tayebeh Chimeh & Juneseok Lee & Nariman Vaizadeh & Jan Adamowski, 2015. "Uncertainty analysis for extreme flood events in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1947-1960, September.
    5. Wagenschein, Dierk & Rode, Michael, 2008. "Modelling the impact of river morphology on nitrogen retention—A case study of the Weisse Elster River (Germany)," Ecological Modelling, Elsevier, vol. 211(1), pages 224-232.
    6. Zhao, Xiaodong & Zhang, Hongjian & Tao, Xiaolei, 2013. "Predicting the short-time-scale variability of chlorophyll a in the Elbe River using a Lagrangian-based multi-criterion analog model," Ecological Modelling, Elsevier, vol. 250(C), pages 279-286.
    7. Haas, Marcelo B. & Guse, Björn & Pfannerstill, Matthias & Fohrer, Nicola, 2015. "Detection of dominant nitrate processes in ecohydrological modeling with temporal parameter sensitivity analysis," Ecological Modelling, Elsevier, vol. 314(C), pages 62-72.
    8. Simon Deslauriers & Tew-Fik Mahdi, 2018. "Flood modelling improvement using automatic calibration of two dimensional river software SRH-2D," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 697-715, March.
    9. Li Li & Eun-Sung Chung & Kyung Soo Jun, 2018. "Robust Parameter Set Selection for a Hydrodynamic Model Based on Multi-Site Calibration Using Multi-Objective Optimization and Minimax Regret Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3979-3995, September.
    10. H. Boyacioglu & T. Vetter & V. Krysanova & M. Rode, 2012. "Modeling the impacts of climate change on nitrogen retention in a 4th order stream," Climatic Change, Springer, vol. 113(3), pages 981-999, August.
    11. Yunxing Yin & Sanyuan Jiang & Charlotta Pers & Xiaoying Yang & Qun Liu & Jin Yuan & Mingxing Yao & Yi He & Xingzhang Luo & Zheng Zheng, 2016. "Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model," IJERPH, MDPI, vol. 13(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:18:p:2173-2186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.