IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421007228.html
   My bibliography  Save this article

New cognition on the response of reference evapotranspiration to climate change in China using an independent climatic driver system

Author

Listed:
  • Sun, Juying
  • Wang, Genxu
  • Sun, Xiangyang
  • Hu, Zhaoyong
  • Lin, Shan
  • Wang, Fei
  • Yang, Yi

Abstract

Reference evapotranspiration (ETo) is a key parameter in hydrometeorological studies, but dependent climatic drivers can induce uncertainties when attributing changes of ETo to climate change, and many studies have neglected this issue. In this study, two sets of climatic drivers (the independent/dependent driver system) were used to attribute changes of Penman–Monteith ETo to climatic variables in China. Results show ETo presented an upward–downward–upward trend with the change points in 1978 and 1996. Using the dependent driver system, the sensitivity coefficient and the contribution of average air temperature (Tmean) were underestimated by at least 57% and 46% during three periods (1960–1978, 1979–1996 and 1997–2019). The largest relative changes of contribution of Tmean (C_Tmean) were found in southeast of China with high temperatures, while largest relative changes of C_Tmean peaked in autumn. Therefore, in order to promote the acquisition of relatively objective results in attributing changes of ETo, the independence of climatic drivers must be carefully addressed. Using the independent driver system, we found ETo was most sensitive to Tmean in spring, summer and winter. Tmean was always a dominant factor for the largest percentage (at least 41%) of grids across China, followed by WS (at most 30%) during three periods. However, the large changes of WS in northwest of China promote the changes of ETo during 1960–1978 and 1979–1996, leading to increased WS, decreased WS and increased Tmean responsible for the upward–downward–upward trend of ETo for entire China as a whole during three periods. This study emphasizes the effect of Tmean in changing ETo during the entire study area, and help improve our understanding of the evolution of ETo and providing a guideline for water resource management and water use planning for agriculture.

Suggested Citation

  • Sun, Juying & Wang, Genxu & Sun, Xiangyang & Hu, Zhaoyong & Lin, Shan & Wang, Fei & Yang, Yi, 2022. "New cognition on the response of reference evapotranspiration to climate change in China using an independent climatic driver system," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007228
    DOI: 10.1016/j.agwat.2021.107445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421007228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zongzhi & Ye, Ailing & Wang, Lihui & Liu, Kelin & Cheng, Liang, 2019. "Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979–2015," Agricultural Water Management, Elsevier, vol. 213(C), pages 1096-1108.
    2. Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Jiang, Shouzheng & Liang, Chuan & Cui, Ningbo & Zhao, Lu & Du, Taisheng & Hu, Xiaotao & Feng, Yu & Guan, Jing & Feng, Yi, 2019. "Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 365-378.
    4. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    5. W. Brutsaert & M. B. Parlange, 1998. "Hydrologic cycle explains the evaporation paradox," Nature, Nature, vol. 396(6706), pages 30-30, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Li & Ronghao Chu & Abu Reza Md. Towfiqul Islam & Yuelin Jiang & Shuanghe Shen, 2020. "Attribution Analysis of Long-Term Trends of Aridity Index in the Huai River Basin, Eastern China," Sustainability, MDPI, vol. 12(5), pages 1-25, February.
    2. Geng, Qingling & Zhao, Yongkun & Sun, Shikun & He, Xiaohui & Wang, Dong & Wu, Dingrong & Tian, Zhihui, 2023. "Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 280(C).
    3. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    6. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    7. Brian C. Thiede & Abbie Robinson & Clark Gray, 2024. "Climatic Variability and Internal Migration in Asia: Evidence from Big Microdata," Population and Development Review, The Population Council, Inc., vol. 50(2), pages 513-540, June.
    8. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    9. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    11. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    12. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    13. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    14. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    15. Thiede, Brian C. & Robinson, Abbie & Gray, Clark, 2022. "Climatic Variability and Internal Migration in Asia: Evidence from Integrated Census and Survey Microdata," SocArXiv hxv35, Center for Open Science.
    16. Xiaojia Bao, 2016. "Water, Electricity and Weather Variability in Rural Northern China," Working Papers 2014-07-02, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    17. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    18. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    20. Liu, Mengyu & Zhou, Xiong & Huang, Guohe & Li, Yongping, 2024. "The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically," LSE Research Online Documents on Economics 124431, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.