Combining the Generalized Complementary Relationship and the Modified Priestley-Taylor Equation to estimate and partition the evapotranspiration of typical plantations and grasslands in the Loess Plateau of China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2023.108420
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nadezhdina, Nadezhda & David, Jorge S. & Pinto, Clara A. & David, Teresa S., 2020. "Root sap flow as a tool to establish hydrological thresholds for plant growth and survival," Agricultural Water Management, Elsevier, vol. 241(C).
- Han Chen & Jinhui Jeanne Huang & Kai Wang & Edward McBean, 2020. "Quantitative Assessment of Agricultural Practices on Farmland Evapotranspiration Using EddyCovariance Method and Numerical Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 515-527, January.
- Diarra, A. & Jarlan, L. & Er-Raki, S. & Le Page, M. & Aouade, G. & Tavernier, A. & Boulet, G. & Ezzahar, J. & Merlin, O. & Khabba, S., 2017. "Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa," Agricultural Water Management, Elsevier, vol. 193(C), pages 71-88.
- W. Brutsaert & M. B. Parlange, 1998. "Hydrologic cycle explains the evaporation paradox," Nature, Nature, vol. 396(6706), pages 30-30, November.
- Lyu, Jinlin & He, Qiu-Yue & Chen, Qiu-Wen & Cheng, Ran-Ran & Li, Guoqing & Otsuki, Kyoichi & Yamanaka, Norikazu & Du, Sheng, 2022. "Distinct transpiration characteristics of black locust plantations acclimated to semiarid and subhumid sites in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 262(C).
- Ochege, Friday Uchenna & Luo, Geping & Yuan, Xiuliang & Owusu, George & Li, Chaofan & Justine, Francis Meta, 2022. "Simulated effects of plastic film-mulched soil on surface energy fluxes based on optimized TSEB model in a drip-irrigated cotton field," Agricultural Water Management, Elsevier, vol. 262(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fu, Chong & Song, Xiaoyu & Li, Lanjun & Zhao, Xinkai & Meng, Pengfei & Wang, Long & Wei, Wanyin & Guo, Songle & Zhu, Deming & He, Xi & Yang, Dongdan & Li, Huaiyou, 2024. "Combining the FAO-56 method and the complementary principle to partition the evapotranspiration of typical plantations and grasslands in the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 295(C).
- Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
- Peddinti, Srinivasa Rao & Kisekka, Isaya, 2022. "Estimation of turbulent fluxes over almond orchards using high-resolution aerial imagery with one and two-source energy balance models," Agricultural Water Management, Elsevier, vol. 269(C).
- Gianna Kitsara & Georgia Papaioannou & Athanasios Papathanasiou & Adrianos Retalis, 2013. "Dimming/brightening in Athens: Trends in Sunshine Duration, Cloud Cover and Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1623-1633, April.
- Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
- Kun Yang & Baisheng Ye & Degang Zhou & Bingyi Wu & Thomas Foken & Jun Qin & Zhaoye Zhou, 2011. "Response of hydrological cycle to recent climate changes in the Tibetan Plateau," Climatic Change, Springer, vol. 109(3), pages 517-534, December.
- Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
- Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
- Yuliya Vystavna & Astrid Harjung & Lucilena R. Monteiro & Ioannis Matiatos & Leonard I. Wassenaar, 2021. "Stable isotopes in global lakes integrate catchment and climatic controls on evaporation," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
- Zhuangzhi Sun & Chuanlong Han & Shouwei Gao & Zhaoxin Li & Mingxing Jing & Haipeng Yu & Zuankai Wang, 2022. "Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Elham Forootan, 2019. "Analysis of trends of hydrologic and climatic variables," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 163-171.
- Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
- Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
- Amazirh, Abdelhakim & Merlin, Olivier & Er-Raki, Salah & Bouras, Elhoussaine & Chehbouni, Abdelghani, 2021. "Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method," Agricultural Water Management, Elsevier, vol. 250(C).
- Sara, Ourrai & Bouchra, Aithssaine & Abdelhakim, Amazirh & Salah, Er-RAKI & Lhoussaine, Bouchaou & Frederic, Jacob & Abdelghani, Chehbouni, 2024. "Assessment of the modified two-source energy balance (TSEB) model for estimating evapotranspiration and its components over an irrigated olive orchard in Morocco," Agricultural Water Management, Elsevier, vol. 298(C).
- Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
- Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
- Amir AghaKouchak & Nasrin Nasrollahi, 2010. "Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1229-1249, April.
- Chenchen Ren & Guoyu Ren & Panfeng Zhang & Suonam Kealdrup Tysa & Yun Qin, 2021. "Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland," Land, MDPI, vol. 10(4), pages 1-11, April.
- Bian, Jiang & Hu, Xiaolong & Shi, Liangsheng & Min, Leilei & Zhang, Yucui & Shen, Yanjun & Zhao, Fenghua & Zha, Yuanyuan & Lian, Xie & Huang, Jiesheng, 2024. "Evapotranspiration partitioning by integrating eddy covariance, micro-lysimeter and unmanned aerial vehicle observations: A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
More about this item
Keywords
Generalized Complementary Relationship; Evapotranspiration; Modified Priestley-Taylor equation; Rainfed vegetation; Functional response relationship; Loess Plateau;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002858. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.