IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i1d10.1007_s10957-022-02078-z.html
   My bibliography  Save this article

New Predictor–Corrector Algorithm for Symmetric Cone Horizontal Linear Complementarity Problems

Author

Listed:
  • Zsolt Darvay

    (Babeş-Bolyai University, Corvinus University of Budapest
    Corvinus University of Budapest)

  • Petra Renáta Rigó

    (Corvinus University of Budapest)

Abstract

We propose a new predictor–corrector interior-point algorithm for solving Cartesian symmetric cone horizontal linear complementarity problems, which is not based on a usual barrier function. We generalize the predictor–corrector algorithm introduced in Darvay et al. (SIAM J Optim 30:2628–2658, 2020) to horizontal linear complementarity problems on a Cartesian product of symmetric cones. We apply the algebraically equivalent transformation technique proposed by Darvay (Adv Model Optim 5:51–92, 2003), and we use the difference of the identity and the square root function to determine the new search directions. In each iteration, the proposed algorithm performs one predictor and one corrector step. We prove that the predictor–corrector interior-point algorithm has the same complexity bound as the best known interior-point methods for solving these types of problems. Furthermore, we provide a condition related to the proximity and update parameters for which the introduced predictor-corrector algorithm is well defined.

Suggested Citation

  • Zsolt Darvay & Petra Renáta Rigó, 2024. "New Predictor–Corrector Algorithm for Symmetric Cone Horizontal Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 50-75, July.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02078-z
    DOI: 10.1007/s10957-022-02078-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02078-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02078-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tibor Illés & Marianna Nagy & Tamás Terlaky, 2010. "A polynomial path-following interior point algorithm for general linear complementarity problems," Journal of Global Optimization, Springer, vol. 47(3), pages 329-342, July.
    2. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    3. Petra Renáta Rigó & Zsolt Darvay, 2018. "Infeasible interior-point method for symmetric optimization using a positive-asymptotic barrier," Computational Optimization and Applications, Springer, vol. 71(2), pages 483-508, November.
    4. de Klerk, E. & Roos, C. & Terlaky, T., 1997. "Initialization in semidefinite programming via a self-dual, skew-symmetric embedding," Other publications TiSEM aa045849-1e10-4f84-96ca-4, Tilburg University, School of Economics and Management.
    5. Illes, Tibor & Nagy, Marianna, 2007. "A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1097-1111, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    2. Petra Renáta Rigó & Zsolt Darvay, 2018. "Infeasible interior-point method for symmetric optimization using a positive-asymptotic barrier," Computational Optimization and Applications, Springer, vol. 71(2), pages 483-508, November.
    3. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    4. Tibor Illés & Petra Renáta Rigó & Roland Török, 2024. "Unified Approach of Interior-Point Algorithms for $$P_*(\kappa )$$ P ∗ ( κ ) -LCPs Using a New Class of Algebraically Equivalent Transformations," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 27-49, July.
    5. Terlaky, Tamas, 2001. "An easy way to teach interior-point methods," European Journal of Operational Research, Elsevier, vol. 130(1), pages 1-19, April.
    6. Marianna E.-Nagy & Tibor Illés & Janez Povh & Anita Varga & Janez Žerovnik, 2024. "Sufficient Matrices: Properties, Generating and Testing," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 204-236, July.
    7. Badenbroek, Riley & Dahl, Joachim, 2020. "An Algorithm for Nonsymmetric Conic Optimization Inspired by MOSEK," Other publications TiSEM bcf7ef05-e4e6-4ce8-b2e9-6, Tilburg University, School of Economics and Management.
    8. Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
    9. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Other publications TiSEM 949fb20a-a2c6-4d87-85ea-8, Tilburg University, School of Economics and Management.
    10. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    11. Michael Orlitzky, 2021. "Gaddum’s test for symmetric cones," Journal of Global Optimization, Springer, vol. 79(4), pages 927-940, April.
    12. Xiaoni Chi & Guoqiang Wang & Goran Lesaja, 2024. "Kernel-Based Full-Newton Step Feasible Interior-Point Algorithm for $$P_{*}(\kappa )$$ P ∗ ( κ ) -Weighted Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 108-132, July.
    13. B.V. Halldórsson & R.H. Tütüncü, 2003. "An Interior-Point Method for a Class of Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 559-590, March.
    14. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    15. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    16. E. A. Yıldırım, 2003. "An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 649-676, November.
    17. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    18. Héctor Ramírez & David Sossa, 2017. "On the Central Paths in Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 649-668, February.
    19. Vasile L. Basescu & John E. Mitchell, 2008. "An Analytic Center Cutting Plane Approach for Conic Programming," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 529-551, August.
    20. Zsolt Darvay & Petra Renáta Takács, 2018. "Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 551-563, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02078-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.