IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i1d10.1007_s10957-023-02232-1.html
   My bibliography  Save this article

Unified Approach of Interior-Point Algorithms for $$P_*(\kappa )$$ P ∗ ( κ ) -LCPs Using a New Class of Algebraically Equivalent Transformations

Author

Listed:
  • Tibor Illés

    (Corvinus University of Budapest)

  • Petra Renáta Rigó

    (Corvinus University of Budapest)

  • Roland Török

    (Corvinus University of Budapest)

Abstract

We propose new short-step interior-point algorithms (IPAs) for solving $$P_*(\kappa )$$ P ∗ ( κ ) -linear complementarity problems (LCPs). In order to define the search directions, we use the algebraic equivalent transformation (AET) technique of the system describing the central path. A novelty of the paper is that we introduce a whole, new class of AET functions for which a unified complexity analysis of the IPAs is presented. This class of functions differs from the ones used in the literature for determining search directions, like the class of concave functions determined by Haddou, Migot and Omer, self-regular functions, eligible kernel and self-concordant functions. We prove that the IPAs using any member $$\varphi $$ φ of the new class of AET functions have polynomial iteration complexity in the size of the problem, in starting point’s duality gap, in the accuracy parameter and in the parameter $$\kappa $$ κ .

Suggested Citation

  • Tibor Illés & Petra Renáta Rigó & Roland Török, 2024. "Unified Approach of Interior-Point Algorithms for $$P_*(\kappa )$$ P ∗ ( κ ) -LCPs Using a New Class of Algebraically Equivalent Transformations," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 27-49, July.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-023-02232-1
    DOI: 10.1007/s10957-023-02232-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02232-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02232-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Mansouri & M. Pirhaji, 2013. "A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 451-461, May.
    2. Tibor Illés & Marianna Nagy & Tamás Terlaky, 2010. "A polynomial path-following interior point algorithm for general linear complementarity problems," Journal of Global Optimization, Springer, vol. 47(3), pages 329-342, July.
    3. Illes, Tibor & Nagy, Marianna, 2007. "A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1097-1111, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    2. Marianna E.-Nagy & Tibor Illés & Janez Povh & Anita Varga & Janez Žerovnik, 2024. "Sufficient Matrices: Properties, Generating and Testing," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 204-236, July.
    3. Zsolt Darvay & Petra Renáta Rigó, 2024. "New Predictor–Corrector Algorithm for Symmetric Cone Horizontal Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 50-75, July.
    4. Xiaoni Chi & Guoqiang Wang & Goran Lesaja, 2024. "Kernel-Based Full-Newton Step Feasible Interior-Point Algorithm for $$P_{*}(\kappa )$$ P ∗ ( κ ) -Weighted Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 108-132, July.
    5. Zsolt Darvay & Petra Renáta Takács, 2018. "Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 551-563, September.
    6. Holden, Tom, 2016. "Computation of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 130143, ZBW - Leibniz Information Centre for Economics.
    7. Behrouz Kheirfam, 2014. "A New Complexity Analysis for Full-Newton Step Infeasible Interior-Point Algorithm for Horizontal Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 853-869, June.
    8. Petra Renáta Rigó & Zsolt Darvay, 2018. "Infeasible interior-point method for symmetric optimization using a positive-asymptotic barrier," Computational Optimization and Applications, Springer, vol. 71(2), pages 483-508, November.
    9. Behrouz Kheirfam, 2024. "Complexity Analysis of a Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 133-145, July.
    10. Holden, Tom D., 2016. "Existence, uniqueness and computation of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 127430, ZBW - Leibniz Information Centre for Economics.
    11. Florian A. Potra, 2016. "Sufficient weighted complementarity problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 467-488, June.
    12. G. Wang & C. Yu & K. Teo, 2014. "A full-Newton step feasible interior-point algorithm for $$P_*(\kappa )$$ P ∗ ( κ ) -linear complementarity problems," Journal of Global Optimization, Springer, vol. 59(1), pages 81-99, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-023-02232-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.