IDEAS home Printed from https://ideas.repec.org/a/spr/busres/v13y2020i3d10.1007_s40685-020-00122-0.html
   My bibliography  Save this article

Demand response through automated air conditioning in commercial buildings—a data-driven approach

Author

Listed:
  • Benedict J. Drasch

    (University of Bayreuth)

  • Gilbert Fridgen

    (University of Luxembourg)

  • Lukas Häfner

    (University of Augsburg)

Abstract

Building operation faces great challenges in electricity cost control as prices on electricity markets become increasingly volatile. Simultaneously, building operators could nowadays be empowered with information and communication technology that dynamically integrates relevant information sources, predicts future electricity prices and demand, and uses smart control to enable electricity cost savings. In particular, data-driven decision support systems would allow the utilization of temporal flexibilities in electricity consumption by shifting load to times of lower electricity prices. To contribute to this development, we propose a simple, general, and forward-looking demand response (DR) approach that can be part of future data-driven decision support systems in the domain of building electricity management. For the special use case of building air conditioning systems, our DR approach decides in periodic increments whether to exercise air conditioning in regard to future electricity prices and demand. The decision is made based on an ex-ante estimation by comparing the total expected electricity costs for all possible activation periods. For the prediction of future electricity prices, we draw on existing work and refine a prediction method for our purpose. To determine future electricity demand, we analyze historical data and derive data-driven dependencies. We embed the DR approach into a four-step framework and demonstrate its validity, utility and quality within an evaluation using real-world data from two public buildings in the US. Thereby, we address a real-world business case and find significant cost savings potential when using our DR approach.

Suggested Citation

  • Benedict J. Drasch & Gilbert Fridgen & Lukas Häfner, 2020. "Demand response through automated air conditioning in commercial buildings—a data-driven approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 1491-1525, November.
  • Handle: RePEc:spr:busres:v:13:y:2020:i:3:d:10.1007_s40685-020-00122-0
    DOI: 10.1007/s40685-020-00122-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40685-020-00122-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s40685-020-00122-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Thiam, Djiby-Racine, 2010. "Renewable decentralized in developing countries: Appraisal from microgrids project in Senegal," Renewable Energy, Elsevier, vol. 35(8), pages 1615-1623.
    3. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    4. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    5. Goebel, Christoph, 2013. "On the business value of ICT-controlled plug-in electric vehicle charging in California," Energy Policy, Elsevier, vol. 53(C), pages 1-10.
    6. Breeden, Douglas T., 1979. "An intertemporal asset pricing model with stochastic consumption and investment opportunities," Journal of Financial Economics, Elsevier, vol. 7(3), pages 265-296, September.
    7. Christian Ullrich, 2013. "Valuation of IT Investments Using Real Options Theory," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(5), pages 331-341, October.
    8. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    9. Lujano-Rojas, Juan M. & Monteiro, Cláudio & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimum residential load management strategy for real time pricing (RTP) demand response programs," Energy Policy, Elsevier, vol. 45(C), pages 671-679.
    10. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    11. Michel Benaroch & Robert J. Kauffman, 1999. "A Case for Using Real Options Pricing Analysis to Evaluate Information Technology Project Investments," Information Systems Research, INFORMS, vol. 10(1), pages 70-86, March.
    12. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    13. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    14. Sandip Mukherji, 2011. "The Capital Asset Pricing Model’S Risk-Free Rate," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 5(2), pages 75-83.
    15. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    16. Sezgen, Osman & Goldman, C.A. & Krishnarao, P., 2007. "Option value of electricity demand response," Energy, Elsevier, vol. 32(2), pages 108-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    2. Bettina Freitag & Lukas Häfner & Verena Pfeuffer & Jochen Übelhör, 2020. "Evaluating investments in flexible on-demand production capacity: a real options approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 133-161, April.
    3. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    4. Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
    5. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    6. Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
    7. Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
    8. Feng Xu & Mohamad Sepehri & Jian Hua & Sergey Ivanov & Julius N. Anyu, 2018. "Time-Series Forecasting Models for Gasoline Prices in China," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(12), pages 1-43, December.
    9. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    10. Veiga, Claudimar Pereira da & Veiga, Cássia Rita Pereira da & Puchalski, Weslly & Coelho, Leandro dos Santos & Tortato, Ubiratã, 2016. "Demand forecasting based on natural computing approaches applied to the foodstuff retail segment," Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), pages 174-181.
    11. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
    12. Fridgen, Gilbert & Keller, Robert & Thimmel, Markus & Wederhake, Lars, 2017. "Shifting load through space–The economics of spatial demand side management using distributed data centers," Energy Policy, Elsevier, vol. 109(C), pages 400-413.
    13. Zhen Zeng & Rachneet Kaur & Suchetha Siddagangappa & Saba Rahimi & Tucker Balch & Manuela Veloso, 2023. "Financial Time Series Forecasting using CNN and Transformer," Papers 2304.04912, arXiv.org.
    14. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    15. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    16. Isra Al-Turaiki & Fahad Almutlaq & Hend Alrasheed & Norah Alballa, 2021. "Empirical Evaluation of Alternative Time-Series Models for COVID-19 Forecasting in Saudi Arabia," IJERPH, MDPI, vol. 18(16), pages 1-19, August.
    17. Feuerriegel, Stefan & Bodenbenner, Philipp & Neumann, Dirk, 2016. "Value and granularity of ICT and smart meter data in demand response systems," Energy Economics, Elsevier, vol. 54(C), pages 1-10.
    18. Marvin Carl May & Alexander Albers & Marc David Fischer & Florian Mayerhofer & Louis Schäfer & Gisela Lanza, 2021. "Queue Length Forecasting in Complex Manufacturing Job Shops," Forecasting, MDPI, vol. 3(2), pages 1-17, May.
    19. Paris A. Mastorocostas & Constantinos S. Hilas & Dimitris N. Varsamis & Stergiani C. Dova, 2016. "Telecommunications call volume forecasting with a block-diagonal recurrent fuzzy neural network," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(1), pages 15-25, September.
    20. Sabaj, Ernil & Kahveci, Mustafa, 2018. "Forecasting tax revenues in an emerging economy: The case of Albania," MPRA Paper 84404, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:busres:v:13:y:2020:i:3:d:10.1007_s40685-020-00122-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.