IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v54y2016icp1-10.html
   My bibliography  Save this article

Value and granularity of ICT and smart meter data in demand response systems

Author

Listed:
  • Feuerriegel, Stefan
  • Bodenbenner, Philipp
  • Neumann, Dirk

Abstract

The large-scale integration of intermittent resources of power generation leads to unprecedented fluctuations on the supply side. An electricity retailer can tackle these challenges by pursuing strategies of flexible load shifting — so-called demand response mechanisms. This work addresses the associated trade-off between ICT deployment and economic benefits. The ICT design of a demand response system serves as the basis of a cost-value model, which incorporates all relevant cost components and compares them to the expected savings of an electricity retailer. Our analysis is based on a typical German electricity retailer to determine the optimal read-out frequency of smart meters. For our set of parameters, a positive information value of smart meter read-outs is achieved within an interval of 21 to 57min regarding variable costs. Electricity retailers can achieve a profitable setting by restricting smart meter roll-out to large customers.

Suggested Citation

  • Feuerriegel, Stefan & Bodenbenner, Philipp & Neumann, Dirk, 2016. "Value and granularity of ICT and smart meter data in demand response systems," Energy Economics, Elsevier, vol. 54(C), pages 1-10.
  • Handle: RePEc:eee:eneeco:v:54:y:2016:i:c:p:1-10
    DOI: 10.1016/j.eneco.2015.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988315003382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2015.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brophy Haney, A. & Jamasb, T. & Pollitt, M.G., 2009. "Smart Metering and Electricity Demand: Technology, Economics and International Experience," Cambridge Working Papers in Economics 0905, Faculty of Economics, University of Cambridge.
    2. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    3. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    4. Jeffrey M. Keisler & Zachary A. Collier & Eric Chu & Nina Sinatra & Igor Linkov, 2014. "Value of information analysis: the state of application," Environment Systems and Decisions, Springer, vol. 34(1), pages 3-23, March.
    5. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    6. Christoph Goebel & Hans-Arno Jacobsen & Victor Razo & Christoph Doblander & Jose Rivera & Jens Ilg & Christoph Flath & Hartmut Schmeck & Christof Weinhardt & Daniel Pathmaperuma & Hans-Jürgen Appelrat, 2014. "Energy Informatics," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(1), pages 25-31, February.
    7. Ullrich Jagstaidt & Janis Kossahl & Lutz Kolbe, 2011. "Smart Metering Information Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 3(5), pages 323-326, October.
    8. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    9. McKenna, Eoghan & Richardson, Ian & Thomson, Murray, 2012. "Smart meter data: Balancing consumer privacy concerns with legitimate applications," Energy Policy, Elsevier, vol. 41(C), pages 807-814.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dagoumas, Athanasios S. & Polemis, Michael L., 2017. "An integrated model for assessing electricity retailer’s profitability with demand response," Applied Energy, Elsevier, vol. 198(C), pages 49-64.
    2. Monaco, Roberto & Bergaentzlé, Claire & Leiva Vilaplana, Jose Angel & Ackom, Emmanuel & Nielsen, Per Sieverts, 2024. "Digitalization of power distribution grids: Barrier analysis, ranking and policy recommendations," Energy Policy, Elsevier, vol. 188(C).
    3. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    4. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    5. Jun Dong & Rong Li & Hui Huang, 2018. "Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method," Energies, MDPI, vol. 11(5), pages 1-27, April.
    6. Liu, Guangqiang & Xu, Weiju & Nguyen, Quang Minh, 2024. "Can the energy transition drive economic development? Empirical analysis of China's provincial panel data," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    7. Saia, Artjom, 2023. "Digitalization and CO2 emissions: Dynamics under R&D and technology innovation regimes," Technology in Society, Elsevier, vol. 74(C).
    8. Cédric Clastres & Olivier Rebenaque & Patrick Jochem, 2020. "Provision of Demand Response from the prosumers in multiple markets," Working Papers 2008, Chaire Economie du climat.
    9. Haini, Hazwan, 2021. "Examining the impact of ICT, human capital and carbon emissions: Evidence from the ASEAN economies," International Economics, Elsevier, vol. 166(C), pages 116-125.
    10. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Contract durations in the electricity market: Causal impact of 15min trading on the EPEX SPOT market," Energy Economics, Elsevier, vol. 69(C), pages 367-378.
    11. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    12. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    13. Bertsch, Valentin & Devine, Mel & Sweeney, Conor & Parnell, Andrew C., 2018. "Analysing long-term interactions between demand response and different electricity markets using a stochastic market equilibrium model," Papers WP585, Economic and Social Research Institute (ESRI).
    14. Fanbao Xie & Xin Guan & Junfan Zhu & Jun Ruan & Zeyu Wang & Hejian Liu, 2023. "Environmental Protection Goes Digital: A Policy Perspective on Promoting Digitalization for Sustainable Development in China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    15. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    16. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    17. Arlt, Marie-Louise & Chassin, David & Rivetta, Claudio & Sweeney, James, 2024. "Impact of real-time pricing and residential load automation on distribution systems," Energy Policy, Elsevier, vol. 184(C).
    18. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    19. Reif, Valerie & Meeus, Leonardo, 2022. "Smart metering interoperability issues and solutions: Taking inspiration from other ecosystems and sectors," Utilities Policy, Elsevier, vol. 76(C).
    20. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2020. "Cross-subsidies among residential electricity prosumers from tariff design and metering infrastructure," Energy Policy, Elsevier, vol. 145(C).
    21. Freier, Julia & von Loessl, Victor, 2022. "Dynamic electricity tariffs: Designing reasonable pricing schemes for private households," Energy Economics, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    2. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    3. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    4. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    5. Benedict J. Drasch & Gilbert Fridgen & Lukas Häfner, 2020. "Demand response through automated air conditioning in commercial buildings—a data-driven approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 1491-1525, November.
    6. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    7. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    8. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    9. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    10. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    11. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    12. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    13. Zhou, Kaile & Yang, Shanlin, 2015. "A framework of service-oriented operation model of China׳s power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 719-725.
    14. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    15. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    16. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    17. Mah, Daphne Ngar-yin & van der Vleuten, Johannes Marinus & Hills, Peter & Tao, Julia, 2012. "Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications," Energy Policy, Elsevier, vol. 49(C), pages 204-216.
    18. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    19. Jennings, Mark G., 2013. "A smarter plan? A policy comparison between Great Britain and Ireland's deployment strategies for rolling out new metering technologies," Energy Policy, Elsevier, vol. 57(C), pages 462-468.
    20. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.

    More about this item

    Keywords

    Demand response; Load shifting; Smart meters; Electricity markets; Information granularity; Business models;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:54:y:2016:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.