IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v6y2021i4d10.1007_s41247-021-00095-6.html
   My bibliography  Save this article

Deriving EROI for Thirty Large Oil Companies Using the CO2 Proxy from 1999 to 2018

Author

Listed:
  • Luciano Celi

    (National Research Council)

Abstract

Energy Return on Investment (EROI, sometimes EROEI) is one of the most important indices for evaluating the efficacy of a primary energy source. It is generally defined as the relation between the energy extracted from a given resource and the energy costs diverted from society to extract it. In this paper, the EROI of 30 oil companies was calculated using the CO2 emitted by the companies and declared in Sustainability and/or Annual Reports as required by law, to estimate the energy used for the production process over a time span of 20 years (1999–2018). The resulting EROI estimates for the companies analyzed are rather homogeneous and, except in some cases, these values are relatively constant over time. These values agree (although sometimes somewhat lower than) estimates derived by other methods.

Suggested Citation

  • Luciano Celi, 2021. "Deriving EROI for Thirty Large Oil Companies Using the CO2 Proxy from 1999 to 2018," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-12, December.
  • Handle: RePEc:spr:bioerq:v:6:y:2021:i:4:d:10.1007_s41247-021-00095-6
    DOI: 10.1007/s41247-021-00095-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-021-00095-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-021-00095-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luciano Celi & Claudio Della Volpe & Luca Pardi & Stefano Siboni, 2018. "A New Approach to Calculating the “Corporate” EROI," Biophysical Economics and Resource Quality, Springer, vol. 3(4), pages 1-28, December.
    2. Sers, Martin R. & Victor, Peter A., 2018. "The Energy-emissions Trap," Ecological Economics, Elsevier, vol. 151(C), pages 10-21.
    3. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    4. Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
    5. Nathan Gagnon & Charles A.S. Hall & Lysle Brinker, 2009. "A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production," Energies, MDPI, vol. 2(3), pages 1-14, July.
    6. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    7. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    8. Abdulaziz Al‐Attar & Osamah Alomair, 2005. "Evaluation of upstream petroleum agreements and exploration and production costs," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 29(4), pages 243-266, December.
    9. Claudiu Albulescu, 2020. "Coronavirus and oil price crash," Papers 2003.06184, arXiv.org, revised Mar 2020.
    10. Leena Grandell & Charles A.S. Hall & Mikael Höök, 2011. "Energy Return on Investment for Norwegian Oil and Gas from 1991 to 2008," Sustainability, MDPI, vol. 3(11), pages 1-21, October.
    11. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    12. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    13. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    14. Murphy, David J. & Hall, Charles A.S., 2011. "Adjusting the economy to the new energy realities of the second half of the age of oil," Ecological Modelling, Elsevier, vol. 223(1), pages 67-71.
    15. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    16. Kümmel, Reiner & Lindenberger, Dietmar & Weiser, Florian, 2015. "The economic power of energy and the need to integrate it with energy policy," Energy Policy, Elsevier, vol. 86(C), pages 833-843.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    2. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    3. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    4. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    5. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    6. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    7. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    8. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    9. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    10. David Grassian & Daniel Olsen, 2019. "Lifecycle Energy Accounting of Three Small Offshore Oil Fields," Energies, MDPI, vol. 12(14), pages 1-23, July.
    11. Bartłomiej Bajan & Joanna Łukasiewicz & Agnieszka Poczta-Wajda & Walenty Poczta, 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    12. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.
    13. Adrien Fabre, 2018. "Evolution of EROIs of Electricity Until 2050: Estimation Using the Input-Output Model THEMIS," Policy Papers 2018.09, FAERE - French Association of Environmental and Resource Economists.
    14. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    15. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    16. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    17. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    18. Elise Dupont & Marc Germain & Hervé Jeanmart, 2021. "Estimate of the Societal Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-14, March.
    19. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    20. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:6:y:2021:i:4:d:10.1007_s41247-021-00095-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.