IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2731-d249062.html
   My bibliography  Save this article

Lifecycle Energy Accounting of Three Small Offshore Oil Fields

Author

Listed:
  • David Grassian

    (Program in Systems Engineering, Walter Scott Jr. College of Engineering, Colorado State University, Fort Collins, CO 80523-1302, USA)

  • Daniel Olsen

    (Program in Systems Engineering, Walter Scott Jr. College of Engineering, Colorado State University, Fort Collins, CO 80523-1302, USA)

Abstract

Small oil fields are expected to play an increasingly prominent role in the delivery of global crude oil production. As such, the Energy Return on Investment (EROI) parameter for three small offshore fields are investigated following a well-documented methodology, which is comprised of a “bottom-up” estimate for lifting and drilling energy and a “top-down” estimate for construction energy. EROI is the useable energy output divided by the applied energy input, and in this research, subscripts for “lifting”, “drilling”, and “construction” are used to differentiate the types of input energies accounted for in the EROI ratio. The EROI Lifting time series data for all three fields exhibits a decreasing trend with values that range from more than 300 during early life to less than 50 during latter years. The EROI Lifting parameter appears to follow an exponentially decreasing trend, rather than a linear trend, which is aligned with an exponential decline of production. EROI Lifting is also found to be inversely proportional to the lifting costs, as calculated in USD/barrel of crude oil. Lifting costs are found to range from 0.5 dollars per barrel to 4.5 dollars per barrel. The impact of utilizing produced gas is clearly beneficial and can lead to a reduction of lifting costs by as much as 50% when dual fuel generators are employed, and more than 90% when gas driven generators are utilized. Drilling energy is found to decrease as the field ages, due to a reduction in drilling intensity after the initial production wells are drilled. The drilling energy as a percentage of the yearly energy applied is found to range from 3% to 8%. As such, the EROI Lifting+Drilling value for all three fields approaches EROI Lifting as the field life progresses and the drilling intensity decreases. The construction energy is found to range from 25% to 63% of the total applied energy over the life of the field.

Suggested Citation

  • David Grassian & Daniel Olsen, 2019. "Lifecycle Energy Accounting of Three Small Offshore Oil Fields," Energies, MDPI, vol. 12(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2731-:d:249062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    2. Alexandre Poisson & Charles A. S. Hall, 2013. "Time Series EROI for Canadian Oil and Gas," Energies, MDPI, vol. 6(11), pages 1-20, November.
    3. Jingxuan Feng & Lianyong Feng & Jianliang Wang, 2018. "Analysis of Point-of-Use Energy Return on Investment and Net Energy Yields from China’s Conventional Fossil Fuels," Energies, MDPI, vol. 11(2), pages 1-21, February.
    4. Roman Nogovitsyn & Anton Sokolov, 2014. "Preliminary Calculation of the EROI for the Production of Gas in Russia," Sustainability, MDPI, vol. 6(10), pages 1-15, September.
    5. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Miller, Richard & Thompson, Erica, 2012. "Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates," Energy, Elsevier, vol. 37(1), pages 709-724.
    6. Höök, Mikael & Hirsch, Robert & Aleklett, Kjell, 2009. "Giant oil field decline rates and their influence on world oil production," Energy Policy, Elsevier, vol. 37(6), pages 2262-2272, June.
    7. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    8. Nathan Gagnon & Charles A.S. Hall & Lysle Brinker, 2009. "A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production," Energies, MDPI, vol. 2(3), pages 1-14, July.
    9. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    10. Dale, Michael & Krumdieck, Susan & Bodger, Pat, 2011. "Net energy yield from production of conventional oil," Energy Policy, Elsevier, vol. 39(11), pages 7095-7102.
    11. Carey W. King & Charles A.S. Hall, 2011. "Relating Financial and Energy Return on Investment," Sustainability, MDPI, vol. 3(10), pages 1-23, October.
    12. Leena Grandell & Charles A.S. Hall & Mikael Höök, 2011. "Energy Return on Investment for Norwegian Oil and Gas from 1991 to 2008," Sustainability, MDPI, vol. 3(11), pages 1-21, October.
    13. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    14. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    15. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    16. Brandt, Adam R. & Yeskoo, Tim & Vafi, Kourosh, 2015. "Net energy analysis of Bakken crude oil production using a well-level engineering-based model," Energy, Elsevier, vol. 93(P2), pages 2191-2198.
    17. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    18. Cutler J. Cleveland & Peter A. O’Connor, 2011. "Energy Return on Investment (EROI) of Oil Shale," Sustainability, MDPI, vol. 3(11), pages 1-16, November.
    19. Cleveland, Cutler J., 1992. "Energy quality and energy surplus in the extraction of fossil fuels in the U.S," Ecological Economics, Elsevier, vol. 6(2), pages 139-162, October.
    20. Megan C. Guilford & Charles A.S. Hall & Peter O’Connor & Cutler J. Cleveland, 2011. "A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    2. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    3. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    4. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    5. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    6. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    7. David Grassian & Daniel Olsen, 2020. "Detailed Energy Accounting of Electrical Submersible Pumping Systems," Energies, MDPI, vol. 13(2), pages 1-24, January.
    8. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    9. Bo Xu & Lianyong Feng & William X. Wei & Yan Hu & Jianliang Wang, 2014. "A Preliminary Forecast of the Production Status of China’s Daqing Oil field from the Perspective of EROI," Sustainability, MDPI, vol. 6(11), pages 1-21, November.
    10. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    11. Ke Wang & Harrie Vredenburg & Jianliang Wang & Yi Xiong & Lianyong Feng, 2017. "Energy Return on Investment of Canadian Oil Sands Extraction from 2009 to 2015," Energies, MDPI, vol. 10(5), pages 1-13, May.
    12. Adrien Fabre, 2018. "Evolution of EROIs of Electricity Until 2050: Estimation Using the Input-Output Model THEMIS," Policy Papers 2018.09, FAERE - French Association of Environmental and Resource Economists.
    13. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    14. Huang, Chen & Gu, Baihe & Chen, Yingchao & Tan, Xianchun & Feng, Lianyong, 2019. "Energy return on energy, carbon, and water investment in oil and gas resource extraction: Methods and applications to the Daqing and Shengli oilfields," Energy Policy, Elsevier, vol. 134(C).
    15. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    16. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    17. Luciano Celi & Claudio Della Volpe & Luca Pardi & Stefano Siboni, 2018. "A New Approach to Calculating the “Corporate” EROI," Biophysical Economics and Resource Quality, Springer, vol. 3(4), pages 1-28, December.
    18. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    19. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    20. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2731-:d:249062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.