IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v16y2018i4d10.1007_s10288-017-0366-y.html
   My bibliography  Save this article

An algorithm for generalized constrained multi-source Weber problem with demand substations

Author

Listed:
  • S. Nobakhtian

    (University of Isfahan
    Institute for Research in Fundamental Sciences (IPM))

  • A. Raeisi Dehkordi

    (University of Isfahan)

Abstract

In this paper, we consider a multi-source Weber problem of m new facilities with respect to n demand regions in order to minimize the sum of the transportation costs between these facilities and the demand regions. We find a point on the border of each demand region from which the facilities serve the demand regions at these points. We present an algorithm including a location phase and an allocation phase in each iteration for solving this problem. An algorithm is also proposed for carrying out the location phase. Moreover, global convergence of the new algorithm is proved under mild assumptions, and some numerical results are presented.

Suggested Citation

  • S. Nobakhtian & A. Raeisi Dehkordi, 2018. "An algorithm for generalized constrained multi-source Weber problem with demand substations," 4OR, Springer, vol. 16(4), pages 343-377, December.
  • Handle: RePEc:spr:aqjoor:v:16:y:2018:i:4:d:10.1007_s10288-017-0366-y
    DOI: 10.1007/s10288-017-0366-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-017-0366-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-017-0366-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Brimberg & G.O. Wesolowsky, 2000. "Note: Facility location with closest rectangular distances," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(1), pages 77-84, February.
    2. Canbolat, Mustafa S. & Wesolowsky, George O., 2012. "On the use of the Varignon frame for single facility Weber problems in the presence of convex barriers," European Journal of Operational Research, Elsevier, vol. 217(2), pages 241-247.
    3. G. O. Wesolowsky & R. F. Love, 1971. "Location of facilities with rectangular distances among point and area destinations," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(1), pages 83-90, March.
    4. Carrizosa, E. & Munoz-Marquez, M. & Puerto, J., 1998. "The Weber problem with regional demand," European Journal of Operational Research, Elsevier, vol. 104(2), pages 358-365, January.
    5. Jiang, Jian-Lin & Yuan, Xiao-Ming, 2008. "A heuristic algorithm for constrained multi-source Weber problem - The variational inequality approach," European Journal of Operational Research, Elsevier, vol. 187(2), pages 357-370, June.
    6. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    7. Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
    8. AltInel, I. Kuban & Durmaz, Engin & Aras, Necati & ÖzkIsacIk, Kerem Can, 2009. "A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations," European Journal of Operational Research, Elsevier, vol. 198(3), pages 790-799, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    2. Malgorzata Miklas-Kalczynska & Pawel Kalczynski, 2024. "Multiple obnoxious facility location: the case of protected areas," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    3. Kalczynski, Pawel & Drezner, Zvi, 2022. "The Obnoxious Facilities Planar p-Median Problem with Variable Sizes," Omega, Elsevier, vol. 111(C).
    4. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    5. Jianlin Jiang & Xiaoming Yuan, 2012. "A Barzilai-Borwein-based heuristic algorithm for locating multiple facilities with regional demand," Computational Optimization and Applications, Springer, vol. 51(3), pages 1275-1295, April.
    6. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    7. Bischoff, Martin & Dächert, Kerstin, 2009. "Allocation search methods for a generalized class of location-allocation problems," European Journal of Operational Research, Elsevier, vol. 192(3), pages 793-807, February.
    8. Faiz, Tasnim Ibn & Noor-E-Alam, Md, 2019. "Data center supply chain configuration design: A two-stage decision approach," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 119-135.
    9. Abdolsalam Ghaderi & Mohammad Jabalameli & Farnaz Barzinpour & Ragheb Rahmaniani, 2012. "An Efficient Hybrid Particle Swarm Optimization Algorithm for Solving the Uncapacitated Continuous Location-Allocation Problem," Networks and Spatial Economics, Springer, vol. 12(3), pages 421-439, September.
    10. Nazlı Dolu & Umur Hastürk & Mustafa Kemal Tural, 2020. "Solution methods for a min–max facility location problem with regional customers considering closest Euclidean distances," Computational Optimization and Applications, Springer, vol. 75(2), pages 537-560, March.
    11. Jean-Paul Arnaout & John Khoury, 2022. "Adaptation of WO to the Euclidean location-allocation with unknown number of facilities," Annals of Operations Research, Springer, vol. 315(1), pages 57-72, August.
    12. Byrne, Thomas & Kalcsics, Jörg, 2022. "Conditional facility location problems with continuous demand and a polygonal barrier," European Journal of Operational Research, Elsevier, vol. 296(1), pages 22-43.
    13. Jianlin Jiang & Su Zhang & Yibing Lv & Xin Du & Ziwei Yan, 2020. "An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge," Journal of Global Optimization, Springer, vol. 76(4), pages 793-818, April.
    14. İ K Altınel & N Aras & K C Özkısacık, 2011. "Variable neighbourhood search heuristics for the probabilistic multi-source Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1813-1826, October.
    15. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    16. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    17. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    18. Thomas Byrne & Sándor P. Fekete & Jörg Kalcsics & Linda Kleist, 2023. "Competitive location problems: balanced facility location and the One-Round Manhattan Voronoi Game," Annals of Operations Research, Springer, vol. 321(1), pages 79-101, February.
    19. Ran Wei & Alan Murray, 2015. "Spatial uncertainty in harvest scheduling," Annals of Operations Research, Springer, vol. 232(1), pages 275-289, September.
    20. C. Valero Franco & A. Rodríguez-Chía & I. Espejo Miranda, 2008. "The single facility location problem with average-distances," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 164-194, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:16:y:2018:i:4:d:10.1007_s10288-017-0366-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.