IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v30y2022i1d10.1007_s11750-021-00599-w.html
   My bibliography  Save this article

Less is more: discrete starting solutions in the planar p-median problem

Author

Listed:
  • Pawel Kalczynski

    (California State University-Fullerton)

  • Jack Brimberg

    (The Royal Military College of Canada)

  • Zvi Drezner

    (California State University-Fullerton)

Abstract

This paper examines the performance of improvement search as a function of the quality of the starting solution in the planar (or continuous) p-median problem. We show that using optimal solutions of the analogue discrete p-median problem as the starting solution for heuristic improvement algorithms, as recommended in the literature, can actually lead to inferior performance. That is, good starting solutions obtained in the discrete space with a fraction of the effort can actually be better, a counter-intuitive result that illustrates in a different context the less is more principle recently advocated in the literature.

Suggested Citation

  • Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
  • Handle: RePEc:spr:topjnl:v:30:y:2022:i:1:d:10.1007_s11750-021-00599-w
    DOI: 10.1007/s11750-021-00599-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-021-00599-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-021-00599-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Church, 2019. "Understanding the Weber Location Paradigm," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Contributions to Location Analysis, chapter 0, pages 69-88, Springer.
    2. Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
    3. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    4. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    5. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    6. Zvi Drezner & Taly Dawn Drezner, 2020. "Biologically Inspired Parent Selection in Genetic Algorithms," Annals of Operations Research, Springer, vol. 287(1), pages 161-183, April.
    7. Osman Alp & Erhan Erkut & Zvi Drezner, 2003. "An Efficient Genetic Algorithm for the p-Median Problem," Annals of Operations Research, Springer, vol. 122(1), pages 21-42, September.
    8. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Directional approach to gradual cover: a maximin objective," Computational Management Science, Springer, vol. 17(1), pages 121-139, January.
    9. Mark S. Daskin & Kayse Lee Maass, 2015. "The p-Median Problem," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 21-45, Springer.
    10. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
    11. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    12. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    13. Brimberg, Jack & Drezner, Zvi & Mladenović, Nenad & Salhi, Said, 2014. "A new local search for continuous location problems," European Journal of Operational Research, Elsevier, vol. 232(2), pages 256-265.
    14. Jack Brimberg & John M. Hodgson, 2011. "Heuristics for Location Models," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Foundations of Location Analysis, chapter 0, pages 335-355, Springer.
    15. Zvi Drezner, 2003. "A New Genetic Algorithm for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 320-330, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard L. Church & Zvi Drezner & Pawel Kalczynski, 2023. "Extensions to the planar p-median problem," Annals of Operations Research, Springer, vol. 326(1), pages 115-135, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard L. Church & Zvi Drezner & Pawel Kalczynski, 2023. "Extensions to the planar p-median problem," Annals of Operations Research, Springer, vol. 326(1), pages 115-135, July.
    2. Kalczynski, Pawel & Drezner, Zvi, 2022. "The Obnoxious Facilities Planar p-Median Problem with Variable Sizes," Omega, Elsevier, vol. 111(C).
    3. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    4. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    5. Jean-Paul Arnaout & John Khoury, 2022. "Adaptation of WO to the Euclidean location-allocation with unknown number of facilities," Annals of Operations Research, Springer, vol. 315(1), pages 57-72, August.
    6. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    7. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    8. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2015. "Solving the planar p-median problem by variable neighborhood and concentric searches," Journal of Global Optimization, Springer, vol. 63(3), pages 501-514, November.
    9. Pawel Kalczynski & Zvi Drezner, 2021. "The obnoxious facilities planar p-median problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 577-593, June.
    10. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2021. "Directional approach to gradual cover: the continuous case," Computational Management Science, Springer, vol. 18(1), pages 25-47, January.
    11. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    12. Gökhan Altay & M. Hakan Akyüz & Temel Öncan, 2023. "Solving a minisum single facility location problem in three regions with different norms," Annals of Operations Research, Springer, vol. 321(1), pages 1-37, February.
    13. Zvi Drezner & Taly Dawn Drezner, 2020. "Biologically Inspired Parent Selection in Genetic Algorithms," Annals of Operations Research, Springer, vol. 287(1), pages 161-183, April.
    14. Marilène Cherkesly & Claudio Contardo, 2021. "The conditional p-dispersion problem," Journal of Global Optimization, Springer, vol. 81(1), pages 23-83, September.
    15. Burcin Bozkaya & Seda Yanik & Selim Balcisoy, 2010. "A GIS-Based Optimization Framework for Competitive Multi-Facility Location-Routing Problem," Networks and Spatial Economics, Springer, vol. 10(3), pages 297-320, September.
    16. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    17. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    18. Blanco, Víctor & Puerto, Justo & Ben-Ali, Safae El-Haj, 2016. "Continuous multifacility ordered median location problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 56-64.
    19. Mohammad M. Fazel-Zarandi & J. Christopher Beck, 2012. "Using Logic-Based Benders Decomposition to Solve the Capacity- and Distance-Constrained Plant Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 387-398, August.
    20. Prahalad Venkateshan & Kamlesh Mathur, 2015. "A Heuristic for the Multisource Weber Problem with Service Level Constraints," Transportation Science, INFORMS, vol. 49(3), pages 472-483, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:30:y:2022:i:1:d:10.1007_s11750-021-00599-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.