IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v66y2019icp119-135.html
   My bibliography  Save this article

Data center supply chain configuration design: A two-stage decision approach

Author

Listed:
  • Faiz, Tasnim Ibn
  • Noor-E-Alam, Md

Abstract

Data centers are special-purpose facilities that enable customers to perform cloud based real-time online transactions and rigorous computing operations. Service levels of data center facilities are characterized by response time between query and action, which to a large extent depends on data center location and data travel distance. Another aspect of service level is resource up-time availability, which is determined by data center configuration. Data center location and configuration decisions are, therefore, of great significance to ensure uninterrupted operations in customers of manufacturing and service industries relying on cloud-based computing resources. In this study, following a grid-based location approach, we present two mixed integer linear programming models for capacitated single-source data center location-allocation problems. The first model provides optimal locations, capacities and configurations of data centers, and allocation of demands to open facilities when there is no existing facilities in the region. Our second model considers the decision problem of meeting new demand when the existing demand is met by the already opened facilities. We term these newly arrived demand as replication demand, which results either from emergence of new users of existing customers at distant locations in the future, or as a means of increasing data resilience by creating data replication as a backup. To solve the decision problem for meeting primary and replication demand optimally, we propose a two-stage decision algorithm. The algorithm provides optimal locations, capacities and configurations for new data centers, capacity addition decisions to the existing facilities and subsequent allocation of demands. Both models and solution algorithm are implemented using AMPL programming language and solved with CPLEX solver. The models are found to be scalable and capable to provide high quality solutions in reasonable time.

Suggested Citation

  • Faiz, Tasnim Ibn & Noor-E-Alam, Md, 2019. "Data center supply chain configuration design: A two-stage decision approach," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 119-135.
  • Handle: RePEc:eee:soceps:v:66:y:2019:i:c:p:119-135
    DOI: 10.1016/j.seps.2018.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012117302501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2018.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfred A. Kuehn & Michael J. Hamburger, 1963. "A Heuristic Program for Locating Warehouses," Management Science, INFORMS, vol. 9(4), pages 643-666, July.
    2. Leon Cooper, 1972. "The Transportation-Location Problem," Operations Research, INFORMS, vol. 20(1), pages 94-108, February.
    3. J. Brimberg & S. Salhi, 2005. "A Continuous Location-Allocation Problem with Zone-Dependent Fixed Cost," Annals of Operations Research, Springer, vol. 136(1), pages 99-115, April.
    4. E. Feldman & F. A. Lehrer & T. L. Ray, 1966. "Warehouse Location Under Continuous Economies of Scale," Management Science, INFORMS, vol. 12(9), pages 670-684, May.
    5. Zainuddin, Z.M. & Salhi, S., 2007. "A perturbation-based heuristic for the capacitated multisource Weber problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1194-1207, June.
    6. Noor-E-Alam, Md. & Mah, Andrew & Doucette, John, 2012. "Integer linear programming models for grid-based light post location problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 17-30.
    7. Aardal, Karen & van den Berg, Pieter L. & Gijswijt, Dion & Li, Shanfei, 2015. "Approximation algorithms for hard capacitated k-facility location problems," European Journal of Operational Research, Elsevier, vol. 242(2), pages 358-368.
    8. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    9. Marín, Alfredo, 2011. "The discrete facility location problem with balanced allocation of customers," European Journal of Operational Research, Elsevier, vol. 210(1), pages 27-38, April.
    10. AltInel, I. Kuban & Durmaz, Engin & Aras, Necati & ÖzkIsacIk, Kerem Can, 2009. "A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations," European Journal of Operational Research, Elsevier, vol. 198(3), pages 790-799, November.
    11. Oded Berman & Zvi Drezner & Arie Tamir & George Wesolowsky, 2009. "Optimal location with equitable loads," Annals of Operations Research, Springer, vol. 167(1), pages 307-325, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    2. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    3. Kalczynski, Pawel & Drezner, Zvi, 2022. "The Obnoxious Facilities Planar p-Median Problem with Variable Sizes," Omega, Elsevier, vol. 111(C).
    4. Miroslav Marić & Zorica Stanimirović & Srdjan Božović, 2015. "Hybrid metaheuristic method for determining locations for long-term health care facilities," Annals of Operations Research, Springer, vol. 227(1), pages 3-23, April.
    5. Liu, Yanchao, 2023. "An elliptical cover problem in drone delivery network design and its solution algorithms," European Journal of Operational Research, Elsevier, vol. 304(3), pages 912-925.
    6. Venkateshan, Prahalad & Ballou, Ronald H. & Mathur, Kamlesh & Maruthasalam, Arulanantha P.P., 2017. "A Two-echelon joint continuous-discrete location model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1028-1039.
    7. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.
    8. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    9. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    10. John Carlsson & Mehdi Behroozi & Xiang Li, 2016. "Geometric partitioning and robust ad-hoc network design," Annals of Operations Research, Springer, vol. 238(1), pages 41-68, March.
    11. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    12. N Aras & M Orbay & I K Altinel, 2008. "Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 64-79, January.
    13. Sharma, R.R.K. & Berry, V., 2007. "Developing new formulations and relaxations of single stage capacitated warehouse location problem (SSCWLP): Empirical investigation for assessing relative strengths and computational effort," European Journal of Operational Research, Elsevier, vol. 177(2), pages 803-812, March.
    14. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    15. Saïd Salhi & Gábor Nagy, 2009. "Local improvement in planar facility location using vehicle routing," Annals of Operations Research, Springer, vol. 167(1), pages 287-296, March.
    16. Fathali Firoozi, 2008. "Boundary Distributions in Testing Inequality Hypotheses," Working Papers 0046, College of Business, University of Texas at San Antonio.
    17. Ramesh Bollapragada & Uday S. Rao & Junying Wu, 2023. "Hub location–allocation for combined fixed-wireless and wireline broadband access networks," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 50(1), pages 115-128, March.
    18. J Brimberg & P Hansen & G Laporte & N Mladenović & D Urošević, 2008. "The maximum return-on-investment plant location problem with market share," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 399-406, March.
    19. Shahede Omidi & Jafar Fathali & Morteza Nazari, 2020. "Inverse and reverse balanced facility location problems with variable edge lengths on trees," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 261-273, June.
    20. Yanjun Jiang & Dachuan Xu & Donglei Du & Chenchen Wu & Dongmei Zhang, 2018. "An approximation algorithm for soft capacitated k-facility location problem," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 493-511, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:66:y:2019:i:c:p:119-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.