IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v198y2009i3p790-799.html
   My bibliography  Save this article

A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations

Author

Listed:
  • AltInel, I. Kuban
  • Durmaz, Engin
  • Aras, Necati
  • ÖzkIsacIk, Kerem Can

Abstract

The capacitated multi-facility Weber problem is concerned with locating m facilities in the Euclidean plane, and allocating their capacities to n customers at minimum total cost. The deterministic version of the problem, which assumes that customer locations and demands are known with certainty, is a non-convex optimization problem and difficult to solve. In this work, we focus on a probabilistic extension and consider the situation where the customer locations are randomly distributed according to a bivariate distribution. We first present a mathematical programming formulation, which is even more difficult than its deterministic version. We then propose an alternate location-allocation local search heuristic generalizing the ideas used originally for the deterministic problem. In its original form, the applicability of the heuristic depends on the calculation of the expected distances between the facilities and customers, which can be done for only very few distance and probability density function combinations. We therefore propose approximation methods which make the method applicable for any distance function and bivariate location distribution.

Suggested Citation

  • AltInel, I. Kuban & Durmaz, Engin & Aras, Necati & ÖzkIsacIk, Kerem Can, 2009. "A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations," European Journal of Operational Research, Elsevier, vol. 198(3), pages 790-799, November.
  • Handle: RePEc:eee:ejores:v:198:y:2009:i:3:p:790-799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00838-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leon Cooper, 1972. "The Transportation-Location Problem," Operations Research, INFORMS, vol. 20(1), pages 94-108, February.
    2. Jack Brimberg & Robert F. Love, 1993. "Global Convergence of a Generalized Iterative Procedure for the Minisum Location Problem with lp Distances," Operations Research, INFORMS, vol. 41(6), pages 1153-1163, December.
    3. James E. Ward & Richard E. Wendell, 1985. "Using Block Norms for Location Modeling," Operations Research, INFORMS, vol. 33(5), pages 1074-1090, October.
    4. Robert F. Love & James G. Morris, 1979. "Mathematical Models of Road Travel Distances," Management Science, INFORMS, vol. 25(2), pages 130-139, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanık, Seda & Sürer, Özge & Öztayşi, Başar, 2016. "Designing sustainable energy regions using genetic algorithms and location-allocation approach," Energy, Elsevier, vol. 97(C), pages 161-172.
    2. S. Nobakhtian & A. Raeisi Dehkordi, 2018. "An algorithm for generalized constrained multi-source Weber problem with demand substations," 4OR, Springer, vol. 16(4), pages 343-377, December.
    3. Ran Wei & Alan Murray, 2015. "Spatial uncertainty in harvest scheduling," Annals of Operations Research, Springer, vol. 232(1), pages 275-289, September.
    4. Kalczynski, Pawel & Drezner, Zvi, 2022. "The Obnoxious Facilities Planar p-Median Problem with Variable Sizes," Omega, Elsevier, vol. 111(C).
    5. İ K Altınel & N Aras & K C Özkısacık, 2011. "Variable neighbourhood search heuristics for the probabilistic multi-source Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1813-1826, October.
    6. Noor-E-Alam, Md. & Mah, Andrew & Doucette, John, 2012. "Integer linear programming models for grid-based light post location problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 17-30.
    7. Faiz, Tasnim Ibn & Noor-E-Alam, Md, 2019. "Data center supply chain configuration design: A two-stage decision approach," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 119-135.
    8. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.
    2. Jianlin Jiang & Su Zhang & Yibing Lv & Xin Du & Ziwei Yan, 2020. "An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge," Journal of Global Optimization, Springer, vol. 76(4), pages 793-818, April.
    3. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    4. Hanif D. Sherali & Intesar Al-Loughani & Shivaram Subramanian, 2002. "Global Optimization Procedures for the Capacitated Euclidean and l p Distance Multifacility Location-Allocation Problems," Operations Research, INFORMS, vol. 50(3), pages 433-448, June.
    5. Enrique R. Venta & Francis J. Nourie, 1989. "Facility location on a grid with a diagonal line," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(5), pages 709-717, October.
    6. Brimberg, Jack & Juel, Henrik, 1998. "A bicriteria model for locating a semi-desirable facility in the plane," European Journal of Operational Research, Elsevier, vol. 106(1), pages 144-151, April.
    7. C. Valero Franco & A. Rodríguez-Chía & I. Espejo Miranda, 2008. "The single facility location problem with average-distances," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 164-194, July.
    8. Levinson, David & El-Geneidy, Ahmed, 2009. "The minimum circuity frontier and the journey to work," Regional Science and Urban Economics, Elsevier, vol. 39(6), pages 732-738, November.
    9. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    10. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    11. MacLeod, W.B. & Norman, G. & Thisse, J.-F., 1988. "Price discrimination and equilibrium in monopolistic competition," International Journal of Industrial Organization, Elsevier, vol. 6(4), pages 429-446.
    12. N Aras & M Orbay & I K Altinel, 2008. "Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 64-79, January.
    13. Uster, Halit & Love, Robert F., 2001. "On the directional bias of the lbp-norm," European Journal of Operational Research, Elsevier, vol. 128(3), pages 664-673, February.
    14. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    15. Soumen Kumar Das & Magfura Pervin & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2023. "Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach," Annals of Operations Research, Springer, vol. 324(1), pages 283-309, May.
    16. Jing Chen & Pengfei Gui & Tao Ding & Sanggyun Na & Yingtang Zhou, 2019. "Optimization of Transportation Routing Problem for Fresh Food by Improved Ant Colony Algorithm Based on Tabu Search," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    17. Shiripour, Saber & Mahdavi-Amiri, Nezam, 2019. "Optimal distribution of the injured in a multi-type transportation network with damage-dependent travel times: Two metaheuristic approaches," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    18. Brimberg, Jack & Love, Robert F. & Walker, John H., 1995. "The effect of axis rotation on distance estimation," European Journal of Operational Research, Elsevier, vol. 80(2), pages 357-364, January.
    19. Simin Huang & Rajan Batta & Kathrin Klamroth & Rakesh Nagi, 2005. "The K-Connection Location Problem in a Plane," Annals of Operations Research, Springer, vol. 136(1), pages 193-209, April.
    20. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:198:y:2009:i:3:p:790-799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.