IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v51y2012i3p1275-1295.html
   My bibliography  Save this article

A Barzilai-Borwein-based heuristic algorithm for locating multiple facilities with regional demand

Author

Listed:
  • Jianlin Jiang
  • Xiaoming Yuan

Abstract

No abstract is available for this item.

Suggested Citation

  • Jianlin Jiang & Xiaoming Yuan, 2012. "A Barzilai-Borwein-based heuristic algorithm for locating multiple facilities with regional demand," Computational Optimization and Applications, Springer, vol. 51(3), pages 1275-1295, April.
  • Handle: RePEc:spr:coopap:v:51:y:2012:i:3:p:1275-1295
    DOI: 10.1007/s10589-010-9392-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-010-9392-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-010-9392-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisc Radó, 1988. "The Euclidean Multifacility Location Problem," Operations Research, INFORMS, vol. 36(3), pages 485-492, June.
    2. P. Hansen & D. Peeters & J.-F. Thisse, 1982. "An Algorithm for a Constrained Weber Problem," Management Science, INFORMS, vol. 28(11), pages 1285-1295, November.
    3. Stefan Nickel & Justo Puerto & Antonio M. Rodriguez-Chia, 2003. "An Approach to Location Models Involving Sets as Existing Facilities," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 693-715, November.
    4. J. Brimberg & G.O. Wesolowsky, 2002. "Minisum Location with Closest Euclidean Distances," Annals of Operations Research, Springer, vol. 111(1), pages 151-165, March.
    5. Carrizosa, E. & Munoz-Marquez, M. & Puerto, J., 1998. "The Weber problem with regional demand," European Journal of Operational Research, Elsevier, vol. 104(2), pages 358-365, January.
    6. Lawrence M. Ostresh, 1978. "On the Convergence of a Class of Iterative Methods for Solving the Weber Location Problem," Operations Research, INFORMS, vol. 26(4), pages 597-609, August.
    7. Jian-lin Jiang & Ya Xu, 2006. "Minisum location problem with farthest Euclidean distances," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 285-308, October.
    8. Jiang, Jian-Lin & Yuan, Xiao-Ming, 2008. "A heuristic algorithm for constrained multi-source Weber problem - The variational inequality approach," European Journal of Operational Research, Elsevier, vol. 187(2), pages 357-370, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Gu & Jianlin Jiang & Shun Zhang, 2023. "Distributionally robust Weber problem with uncertain demand," Computational Optimization and Applications, Springer, vol. 85(3), pages 705-752, July.
    2. Nazlı Dolu & Umur Hastürk & Mustafa Kemal Tural, 2020. "Solution methods for a min–max facility location problem with regional customers considering closest Euclidean distances," Computational Optimization and Applications, Springer, vol. 75(2), pages 537-560, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian-lin Jiang & Ya Xu, 2006. "Minisum location problem with farthest Euclidean distances," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 285-308, October.
    2. Nazlı Dolu & Umur Hastürk & Mustafa Kemal Tural, 2020. "Solution methods for a min–max facility location problem with regional customers considering closest Euclidean distances," Computational Optimization and Applications, Springer, vol. 75(2), pages 537-560, March.
    3. C. Valero Franco & A. Rodríguez-Chía & I. Espejo Miranda, 2008. "The single facility location problem with average-distances," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 164-194, July.
    4. André Berger & Alexander Grigoriev & Andrej Winokurow, 2017. "An efficient algorithm for the single facility location problem with polyhedral norms and disk-shaped demand regions," Computational Optimization and Applications, Springer, vol. 68(3), pages 661-669, December.
    5. Victor Blanco & Justo Puerto & Safae El Haj Ben Ali, 2014. "Revisiting several problems and algorithms in continuous location with $$\ell _\tau $$ ℓ τ norms," Computational Optimization and Applications, Springer, vol. 58(3), pages 563-595, July.
    6. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    7. S. Nobakhtian & A. Raeisi Dehkordi, 2018. "An algorithm for generalized constrained multi-source Weber problem with demand substations," 4OR, Springer, vol. 16(4), pages 343-377, December.
    8. Diaz-Banez, J.M. & Ramos, P.A. & Sabariego, P., 2007. "The maximin line problem with regional demand," European Journal of Operational Research, Elsevier, vol. 181(1), pages 20-29, August.
    9. Carrizosa, Emilio & Goerigk, Marc & Schöbel, Anita, 2017. "A biobjective approach to recoverable robustness based on location planning," European Journal of Operational Research, Elsevier, vol. 261(2), pages 421-435.
    10. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    11. Jianlin Jiang & Su Zhang & Yibing Lv & Xin Du & Ziwei Yan, 2020. "An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge," Journal of Global Optimization, Springer, vol. 76(4), pages 793-818, April.
    12. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    13. Behrens, Kristian, 2007. "On the location and lock-in of cities: Geography vs transportation technology," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 22-45, January.
    14. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    15. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    16. H. W. Hamacher & S. Nickel, 1995. "Restricted planar location problems and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 967-992, September.
    17. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    18. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    19. Jack Brimberg & Henrik Juel & Mark-Christoph Körner & Anita Schöbel, 2014. "Locating an axis-parallel rectangle on a Manhattan plane," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 185-207, April.
    20. Lina Mallozzi & Justo Puerto & Moisés Rodríguez-Madrena, 2019. "On Location-Allocation Problems for Dimensional Facilities," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 730-767, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:51:y:2012:i:3:p:1275-1295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.