Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s40745-020-00314-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
- Zhang, Xiaolei & Ma, Renjun & Wang, Lin, 2020. "Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Sanjay Kumar, 2020. "Monitoring Novel Corona Virus (COVID-19) Infections in India by Cluster Analysis," Annals of Data Science, Springer, vol. 7(3), pages 417-425, September.
- Aboma Temesgen & Abdisa Gurmesa & Yehenew Getchew, 2018. "Joint Modeling of Longitudinal CD4 Count and Time-to-Death of HIV/TB Co-infected Patients: A Case of Jimma University Specialized Hospital," Annals of Data Science, Springer, vol. 5(4), pages 659-678, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
- Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2022. "Statistical Inferences: Based on Exponentiated Exponential Model to Assess Novel Corona Virus (COVID-19) Kerala Patient Data," Annals of Data Science, Springer, vol. 9(1), pages 101-119, February.
- Muhammad Ahsan-ul-Haq & Mukhtar Ahmed & Javeria Zafar & Pedro Luiz Ramos, 2022. "Modeling of COVID-19 Cases in Pakistan Using Lifetime Probability Distributions," Annals of Data Science, Springer, vol. 9(1), pages 141-152, February.
- Petar Radanliev & David Roure & Rob Walton & Max Kleek & Omar Santos & La’Treall Maddox, 2022. "What Country, University, or Research Institute, Performed the Best on Covid-19 During the First Wave of the Pandemic?," Annals of Data Science, Springer, vol. 9(5), pages 1049-1067, October.
- Elphas Okango & Henry Mwambi, 2022. "Dictionary Based Global Twitter Sentiment Analysis of Coronavirus (COVID-19) Effects and Response," Annals of Data Science, Springer, vol. 9(1), pages 175-186, February.
- Hanem Mohamed & Salwa A. Mousa & Amina E. Abo-Hussien & Magda M. Ismail, 2022. "Estimation of the Daily Recovery Cases in Egypt for COVID-19 Using Power Odd Generalized Exponential Lomax Distribution," Annals of Data Science, Springer, vol. 9(1), pages 71-99, February.
- Lukman O. Oyelami & Matthew I. Ogbuagu & Olufemi M. Saibu, 2022. "Dynamic Interaction of COVID-19 Incidence and Stock Market Performance: Evidence from Nigeria," Annals of Data Science, Springer, vol. 9(5), pages 1009-1023, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Asima Saleem, 2022. "Action for Action: Mad COVID-19, Falling Markets and Rising Volatility of SAARC Region," Annals of Data Science, Springer, vol. 9(1), pages 33-54, February.
- Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
- Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
- Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2022. "Statistical Inferences: Based on Exponentiated Exponential Model to Assess Novel Corona Virus (COVID-19) Kerala Patient Data," Annals of Data Science, Springer, vol. 9(1), pages 101-119, February.
- Muhammad Ahsan-ul-Haq & Mukhtar Ahmed & Javeria Zafar & Pedro Luiz Ramos, 2022. "Modeling of COVID-19 Cases in Pakistan Using Lifetime Probability Distributions," Annals of Data Science, Springer, vol. 9(1), pages 141-152, February.
- Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
- Weijia Xu & Aihua Li & Lu Wei, 2022. "The Impact of COVID-19 on China’s Capital Market and Major Industry Sectors," Annals of Data Science, Springer, vol. 9(5), pages 983-1007, October.
- S. Chakraborty, 2023. "Monitoring COVID-19 Cases and Vaccination in Indian States and Union Territories Using Unsupervised Machine Learning Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 967-989, August.
- Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
- Souvik Banerjee & Triparna Bose & Vijay M. Patil & Atanu Bhattacharjee & Kumar Prabhash, 2023. "Bayesian Effective Biological Dose Determination in Immunotherapy Response Trial," Annals of Data Science, Springer, vol. 10(1), pages 209-223, February.
- Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
- Dante Miller & Jong-Min Kim, 2021. "Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies," JRFM, MDPI, vol. 14(10), pages 1-10, October.
- Maher Abida & Emna Mnif, 2023. "Investor Attention in Cryptocurrency Markets: Examining the Effects of Vaccination and COVID-19 Spread through a Wavelet Approach," International Journal of Economics and Financial Issues, Econjournals, vol. 13(5), pages 43-51, September.
- Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
- Anjan Mukherjee & Abhik Mukherjee, 2022. "Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem," Annals of Data Science, Springer, vol. 9(3), pages 611-625, June.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
- Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
- Pereira, Rafael H.M. & Braga, Carlos Kauê Vieira & Servo, Luciana Mendes & Serra, Bernardo & Amaral, Pedro & Gouveia, Nelson & Paez, Antonio, 2021. "Geographic access to COVID-19 healthcare in Brazil using a balanced float catchment area approach," Social Science & Medicine, Elsevier, vol. 273(C).
More about this item
Keywords
COVID-19 outbreak prediction; COVID-19; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:8:y:2021:i:1:d:10.1007_s40745-020-00314-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.