IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v8y2021i1d10.1007_s40745-020-00314-9.html
   My bibliography  Save this article

Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning

Author

Listed:
  • Aman Khakharia

    (K. J. Somaiya College of Engineering)

  • Vruddhi Shah

    (K. J. Somaiya College of Engineering)

  • Sankalp Jain

    (K. J. Somaiya College of Engineering)

  • Jash Shah

    (K. J. Somaiya College of Engineering)

  • Amanshu Tiwari

    (K. J. Somaiya College of Engineering)

  • Prathamesh Daphal

    (K. J. Somaiya College of Engineering)

  • Mahesh Warang

    (K. J. Somaiya College of Engineering)

  • Ninad Mehendale

    (K. J. Somaiya College of Engineering)

Abstract

The Coronavirus Disease-2019 (COVID-19) pandemic persists to have a mortifying impact on the health and well-being of the global population. A continued rise in the number of patients testing positive for COVID-19 has created a lot of stress on governing bodies across the globe and they are finding it difficult to tackle the situation. We have developed an outbreak prediction system for COVID-19 for the top 10 highly and densely populated countries. The proposed prediction models forecast the count of new cases likely to arise for successive 5 days using 9 different machine learning algorithms. A set of models for predicting the rise in new cases, having an average accuracy of 87.9% ± 3.9% was developed for 10 high population and high density countries. The highest accuracy of 99.93% was achieved for Ethiopia using Auto-Regressive Moving Average (ARMA) averaged over the next 5 days. The proposed prediction models used by us can help stakeholders to be prepared in advance for any sudden rise in outbreak to ensure optimal management of available resources.

Suggested Citation

  • Aman Khakharia & Vruddhi Shah & Sankalp Jain & Jash Shah & Amanshu Tiwari & Prathamesh Daphal & Mahesh Warang & Ninad Mehendale, 2021. "Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 1-19, March.
  • Handle: RePEc:spr:aodasc:v:8:y:2021:i:1:d:10.1007_s40745-020-00314-9
    DOI: 10.1007/s40745-020-00314-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00314-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00314-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    2. Zhang, Xiaolei & Ma, Renjun & Wang, Lin, 2020. "Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Sanjay Kumar, 2020. "Monitoring Novel Corona Virus (COVID-19) Infections in India by Cluster Analysis," Annals of Data Science, Springer, vol. 7(3), pages 417-425, September.
    4. Aboma Temesgen & Abdisa Gurmesa & Yehenew Getchew, 2018. "Joint Modeling of Longitudinal CD4 Count and Time-to-Death of HIV/TB Co-infected Patients: A Case of Jimma University Specialized Hospital," Annals of Data Science, Springer, vol. 5(4), pages 659-678, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petar Radanliev & David Roure & Rob Walton & Max Kleek & Omar Santos & La’Treall Maddox, 2022. "What Country, University, or Research Institute, Performed the Best on Covid-19 During the First Wave of the Pandemic?," Annals of Data Science, Springer, vol. 9(5), pages 1049-1067, October.
    2. Elphas Okango & Henry Mwambi, 2022. "Dictionary Based Global Twitter Sentiment Analysis of Coronavirus (COVID-19) Effects and Response," Annals of Data Science, Springer, vol. 9(1), pages 175-186, February.
    3. Lukman O. Oyelami & Matthew I. Ogbuagu & Olufemi M. Saibu, 2022. "Dynamic Interaction of COVID-19 Incidence and Stock Market Performance: Evidence from Nigeria," Annals of Data Science, Springer, vol. 9(5), pages 1009-1023, October.
    4. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    5. Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2022. "Statistical Inferences: Based on Exponentiated Exponential Model to Assess Novel Corona Virus (COVID-19) Kerala Patient Data," Annals of Data Science, Springer, vol. 9(1), pages 101-119, February.
    6. Muhammad Ahsan-ul-Haq & Mukhtar Ahmed & Javeria Zafar & Pedro Luiz Ramos, 2022. "Modeling of COVID-19 Cases in Pakistan Using Lifetime Probability Distributions," Annals of Data Science, Springer, vol. 9(1), pages 141-152, February.
    7. Hanem Mohamed & Salwa A. Mousa & Amina E. Abo-Hussien & Magda M. Ismail, 2022. "Estimation of the Daily Recovery Cases in Egypt for COVID-19 Using Power Odd Generalized Exponential Lomax Distribution," Annals of Data Science, Springer, vol. 9(1), pages 71-99, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    2. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
    3. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    4. Weijia Xu & Aihua Li & Lu Wei, 2022. "The Impact of COVID-19 on China’s Capital Market and Major Industry Sectors," Annals of Data Science, Springer, vol. 9(5), pages 983-1007, October.
    5. Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
    6. Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    7. Asima Saleem, 2022. "Action for Action: Mad COVID-19, Falling Markets and Rising Volatility of SAARC Region," Annals of Data Science, Springer, vol. 9(1), pages 33-54, February.
    8. Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2022. "Statistical Inferences: Based on Exponentiated Exponential Model to Assess Novel Corona Virus (COVID-19) Kerala Patient Data," Annals of Data Science, Springer, vol. 9(1), pages 101-119, February.
    9. Muhammad Ahsan-ul-Haq & Mukhtar Ahmed & Javeria Zafar & Pedro Luiz Ramos, 2022. "Modeling of COVID-19 Cases in Pakistan Using Lifetime Probability Distributions," Annals of Data Science, Springer, vol. 9(1), pages 141-152, February.
    10. S. Chakraborty, 2023. "Monitoring COVID-19 Cases and Vaccination in Indian States and Union Territories Using Unsupervised Machine Learning Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 967-989, August.
    11. Souvik Banerjee & Triparna Bose & Vijay M. Patil & Atanu Bhattacharjee & Kumar Prabhash, 2023. "Bayesian Effective Biological Dose Determination in Immunotherapy Response Trial," Annals of Data Science, Springer, vol. 10(1), pages 209-223, February.
    12. Dante Miller & Jong-Min Kim, 2021. "Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies," JRFM, MDPI, vol. 14(10), pages 1-10, October.
    13. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    14. Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
    15. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    16. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    17. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.
    18. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    19. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    20. Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:8:y:2021:i:1:d:10.1007_s40745-020-00314-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.