IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v402y2019icp18-34.html
   My bibliography  Save this article

Effect of study area bathymetric heterogeneity on parameterization and performance of a depth-based geolocation model for demersal fishes

Author

Listed:
  • Nielsen, J.K.
  • Mueter, F.J.
  • Adkison, M.D.
  • Loher, T.
  • McDermott, S.F.
  • Seitz, A.C.

Abstract

State-space geolocation models can provide valuable information on the large-scale movements of many fish species. The sensitivity of such complex models to model assumptions and fixed parameters is rarely assessed quantitatively, yet is important for interpretation of results and adaptation for new species and different geographic regions. We hypothesized that parameterization and performance of a discrete Hidden Markov Model (HMM) with a Gaussian depth-based data likelihood for demersal fishes first implemented in the flat terrain of the North Sea would be affected by the more heterogeneous depths found in the North Pacific Ocean. We ran the HMM on depth data from simulated random walk movement trajectories in flat, sloping, and heterogeneous study areas in the North Pacific Ocean where known depth distributions in each model grid cell were provided by high-resolution (5 m) multibeam bathymetry data. Performance was compared among different data likelihood specifications and grid sizes in each area. We found that model performance decreased when grid cell depth distributions departed from normal distributions. Performance decreased with increasing grid size in the heterogeneous and sloping study areas but not the flat study area. A new method for specifying grid cell depth variance based on study area slope performed better than the standard method of obtaining variance from adjacent grid cell values for larger grid sizes in heterogeneous and sloping areas. Overall model performance was highest in the heterogeneous and sloping areas at small grid sizes and in the flat area at large grid sizes. The estimated value of diffusion was also sensitive to bathymetric heterogeneity and variance-specification method. These results suggest that the degree of study area heterogeneity should be considered when choosing fixed parameters such as likelihood and grid size, and when interpreting the model results. In addition, this approach demonstrates the need for sensitivity analyses when using the model on a new species and in a new study area.

Suggested Citation

  • Nielsen, J.K. & Mueter, F.J. & Adkison, M.D. & Loher, T. & McDermott, S.F. & Seitz, A.C., 2019. "Effect of study area bathymetric heterogeneity on parameterization and performance of a depth-based geolocation model for demersal fishes," Ecological Modelling, Elsevier, vol. 402(C), pages 18-34.
  • Handle: RePEc:eee:ecomod:v:402:y:2019:i:c:p:18-34
    DOI: 10.1016/j.ecolmodel.2019.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019301280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woillez, Mathieu & Fablet, Ronan & Ngo, Tran-Thanh & Lalire, Maxime & Lazure, Pascal & de Pontual, Hélène, 2016. "A HMM-based model to geolocate pelagic fish from high-resolution individual temperature and depth histories: European sea bass as a case study," Ecological Modelling, Elsevier, vol. 321(C), pages 10-22.
    2. Marie Laure Delignette-Muller & Christophe Dutang, 2015. "fitdistrplus : An R Package for Fitting Distributions," Post-Print hal-01616147, HAL.
    3. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nielsen, Julie K. & Tribuzio, Cindy A., 2023. "Development and parameterization of a data likelihood model for geolocation of a bentho-pelagic fish in the North Pacific Ocean," Ecological Modelling, Elsevier, vol. 478(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    2. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    3. K. G. Reddy & M. G. M. Khan, 2020. "stratifyR: An R Package for optimal stratification and sample allocation for univariate populations," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 383-405, September.
    4. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    6. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    7. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    8. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    9. Adam R. Martin & Rachel O. Mariani & Kimberley A. Cathline & Michael Duncan & Nicholas J. Paroshy & Gavin Robertson, 2022. "Soil Compaction Drives an Intra-Genotype Leaf Economics Spectrum in Wine Grapes," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    10. Héctor Nájera & David Gordon, 2023. "A Monte Carlo Study of Some Empirical Methods to Find the Optimal Poverty Line in Multidimensional Poverty Measurement," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 391-419, June.
    11. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    12. Valentas Gruzauskas & Aurelija Burinskiene & Andrius Krisciunas, 2023. "Application of Information-Sharing for Resilient and Sustainable Food Delivery in Last-Mile Logistics," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    13. Amanda M. Wilson & Kelly A. Reynolds & Marc P. Verhougstraete & Robert A. Canales, 2019. "Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1812-1824, August.
    14. Wang, Xialin & Nuppenau, Ernst-August, 2021. "Modelling payments for ecosystem services for solving future water conflicts at spatial scales: The Okavango River Basin example," Ecological Economics, Elsevier, vol. 184(C).
    15. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    16. Kun Mo Lee & Min Hyeok Lee & Jong Seok Lee & Joo Young Lee, 2020. "Uncertainty Analysis of Greenhouse Gas (GHG) Emissions Simulated by the Parametric Monte Carlo Simulation and Nonparametric Bootstrap Method," Energies, MDPI, vol. 13(18), pages 1-15, September.
    17. Alexander Webb & Pramesh Kumar & Alireza Khani, 2020. "Estimation of passenger waiting time using automatically collected transit data," Public Transport, Springer, vol. 12(2), pages 299-311, June.
    18. Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
    19. Bejarano, Adriana C. & Wells, Randall S. & Costa, Daniel P., 2017. "Development of a bioenergetic model for estimating energy requirements and prey biomass consumption of the bottlenose dolphin Tursiops truncatus," Ecological Modelling, Elsevier, vol. 356(C), pages 162-172.
    20. Negahban, Ashkan, 2019. "Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 317-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:402:y:2019:i:c:p:18-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.