IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i3d10.1007_s10479-023-05175-y.html
   My bibliography  Save this article

Extremal properties of evolving networks: local dependence and heavy tails

Author

Listed:
  • Natalia Markovich

    (V.A. Trapeznikov Institute of Control Sciences Russian Academy of Sciences)

Abstract

A network evolution with predicted tail and extremal indices of PageRank and the Max-Linear Model used as node influence indices in random graphs is considered. The tail index shows a heaviness of the distribution tail. The extremal index is a measure of clustering (or local dependence) of the stochastic process. The cluster implies a set of consecutive exceedances of the process over a sufficiently high threshold. Our recent results concerning sums and maxima of non-stationary random length sequences of regularly varying random variables are extended to random graphs. Starting with a set of connected stationary seed communities as a hot spot and ranking them with regard to their tail indices, the tail and extremal indices of new nodes that are appended to the network may be determined. This procedure allows us to predict a temporal network evolution in terms of tail and extremal indices. The extremal index determines limiting distributions of a maximum of the PageRank and the Max-Linear Model of newly attached nodes. The exposition is provided by algorithms and examples. To validate our theoretical results, our simulation and real data study concerning a linear preferential attachment as a tool for network growth are provided.

Suggested Citation

  • Natalia Markovich, 2024. "Extremal properties of evolving networks: local dependence and heavy tails," Annals of Operations Research, Springer, vol. 339(3), pages 1839-1870, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-023-05175-y
    DOI: 10.1007/s10479-023-05175-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05175-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05175-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Attila Mester & Andrei Pop & Bogdan-Eduard-Mădălin Mursa & Horea Greblă & Laura Dioşan & Camelia Chira, 2021. "Network Analysis Based on Important Node Selection and Community Detection," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    2. Cencheng Shen & Carey E. Priebe & Joshua T. Vogelstein, 2020. "From Distance Correlation to Multiscale Graph Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 280-291, January.
    3. Jo~ao P. da Cruz & Pedro G. Lind, 2011. "The bounds of heavy-tailed return distributions in evolving complex networks," Papers 1109.2803, arXiv.org, revised Jan 2013.
    4. Robert, Christian Y. & Segers, Johan, 2008. "Tails of random sums of a heavy-tailed number of light-tailed terms," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 85-92, August.
    5. Petter Holme & Nelly Litvak, 2017. "Cost-efficient vaccination protocols for network epidemiology," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-18, September.
    6. Natalia Markovich & Maksim Ryzhov & Marijus Vaičiulis, 2022. "Tail Index Estimation of PageRanks in Evolving Random Graphs," Mathematics, MDPI, vol. 10(16), pages 1-26, August.
    7. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    8. Natalia Markovich, 2017. "Clustering and hitting times of threshold exceedances and applications," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 9(4), pages 331-347.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Markovich & Marijus Vaičiulis, 2023. "Extreme Value Statistics for Evolving Random Networks," Mathematics, MDPI, vol. 11(9), pages 1-35, May.
    2. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    3. Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Mathematics, MDPI, vol. 9(21), pages 1-33, November.
    4. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    5. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Sara Ali Alokley & Mansour Saleh Albarrak, 2020. "Clustering of Extremes in Financial Returns: A Study of Developed and Emerging Markets," JRFM, MDPI, vol. 13(7), pages 1-11, July.
    7. Xin Zhao & Carl John Scarrott & Marco Reale & Les Oxley, 2009. "Bayesian Extreme Value Mixture Modelling for Estimating VaR," Working Papers in Economics 09/15, University of Canterbury, Department of Economics and Finance.
    8. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    9. Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
    10. Caston Sigauke & Rosinah Mukhodobwane & Wilbert Chagwiza & Winston Garira, 2022. "Asymptotic Dependence Modelling of the BRICS Stock Markets," IJFS, MDPI, vol. 10(3), pages 1-32, July.
    11. Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
    12. Beirlant, J. & Schoutens, W. & Segers, J.J.J., 2004. "Mandelbrot's Extremism," Discussion Paper 2004-125, Tilburg University, Center for Economic Research.
    13. Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    14. Benjamin Steinegger & Iacopo Iacopini & Andreia Sofia Teixeira & Alberto Bracci & Pau Casanova-Ferrer & Alberto Antonioni & Eugenio Valdano, 2022. "Non-selective distribution of infectious disease prevention may outperform risk-based targeting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    16. Apichit Maneengam, 2023. "Multi-Objective Optimization of the Multimodal Routing Problem Using the Adaptive ε-Constraint Method and Modified TOPSIS with the D-CRITIC Method," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    17. Bücher, Axel & Jennessen, Tobias, 2022. "Statistical analysis for stationary time series at extreme levels: New estimators for the limiting cluster size distribution," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 75-106.
    18. Alexandre Mornet & Thomas Opitz & Michel Luzi & Stéphane Loisel, 2016. "Wind Storm Risk Management," Working Papers hal-01299692, HAL.
    19. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.
    20. Anna Kiriliouk & Chen Zhou, 2024. "Tail Risk Analysis for Financial Time Series," Papers 2409.18643, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-023-05175-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.