IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v22y2013i4p549-579.html
   My bibliography  Save this article

Estimating the upcrossings index

Author

Listed:
  • J. Sebastião
  • A. Martins
  • H. Ferreira
  • L. Pereira

Abstract

For stationary sequences, under general dependence restrictions, any limiting point process for time normalized upcrossings of high levels is a compound Poisson process, i.e., there is a clustering of high upcrossings, where the underlying Poisson points represent cluster positions and the multiplicities correspond to cluster sizes. For such classes of stationary sequences, there exists the upcrossings index η, 0≤η≤1, which is directly related to the extremal index θ, 0≤θ≤1, for suitable high levels. In this paper, we consider the problem of estimating the upcrossings index η for a class of stationary sequences satisfying a mild oscillation restriction. For the proposed estimator, properties such as consistency and asymptotic normality are studied. Finally, the performance of the estimator is assessed through simulation studies for autoregressive processes and case studies in the fields of environment and finance. Comparisons with other estimators derived from well known estimators of the extremal index are also presented. Copyright Sociedad de Estadística e Investigación Operativa 2013

Suggested Citation

  • J. Sebastião & A. Martins & H. Ferreira & L. Pereira, 2013. "Estimating the upcrossings index," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 549-579, November.
  • Handle: RePEc:spr:testjl:v:22:y:2013:i:4:p:549-579
    DOI: 10.1007/s11749-013-0315-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-013-0315-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-013-0315-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Laurini & J. A. Tawn, 2006. "The extremal index for GARCH(1,1) processes with t-distributed innovations," Economics Department Working Papers 2006-SE01, Department of Economics, Parma University (Italy).
    2. Marta Ferreira & Helena Ferreira, 2012. "On extremal dependence: some contributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 566-583, September.
    3. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    4. Hsing, Tailen, 1991. "Estimating the parameters of rare events," Stochastic Processes and their Applications, Elsevier, vol. 37(1), pages 117-139, February.
    5. Gomes, M. Ivette & Hall, Andreia & Miranda, M. Cristina, 2008. "Subsampling techniques and the Jackknife methodology in the estimation of the extremal index," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2022-2041, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
    2. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.
    2. Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
    3. Bücher, Axel & Jennessen, Tobias, 2022. "Statistical analysis for stationary time series at extreme levels: New estimators for the limiting cluster size distribution," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 75-106.
    4. Jose Olmo, 2015. "A New Family of Consistent and Asymptotically-Normal Estimators for the Extremal Index," Econometrics, MDPI, vol. 3(3), pages 1-21, August.
    5. John Galbraith & Serguei Zernov, 2009. "Extreme dependence in the NASDAQ and S&P 500 composite indexes," Applied Financial Economics, Taylor & Francis Journals, vol. 19(13), pages 1019-1028.
    6. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    7. Segers, J.J.J., 2003. "Approximate Distributions of Clusters of Extremes," Other publications TiSEM 443e619d-453d-4a3c-b2f3-5, Tilburg University, School of Economics and Management.
    8. Olmo, José, 2005. "Testing the existence of clustering in the extreme values," UC3M Working papers. Economics we051809, Universidad Carlos III de Madrid. Departamento de Economía.
    9. Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Mathematics, MDPI, vol. 9(21), pages 1-33, November.
    10. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    11. Sara Ali Alokley & Mansour Saleh Albarrak, 2020. "Clustering of Extremes in Financial Returns: A Study of Developed and Emerging Markets," JRFM, MDPI, vol. 13(7), pages 1-11, July.
    12. Będowska-Sójka, Barbara & Echaust, Krzysztof & Just, Małgorzata, 2022. "The asymmetry of the Amihud illiquidity measure on the European markets: The evidence from Extreme Value Theory," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
    13. Xin Zhao & Carl John Scarrott & Marco Reale & Les Oxley, 2009. "Bayesian Extreme Value Mixture Modelling for Estimating VaR," Working Papers in Economics 09/15, University of Canterbury, Department of Economics and Finance.
    14. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    15. Caston Sigauke & Rosinah Mukhodobwane & Wilbert Chagwiza & Winston Garira, 2022. "Asymptotic Dependence Modelling of the BRICS Stock Markets," IJFS, MDPI, vol. 10(3), pages 1-32, July.
    16. Jondeau, Eric & Rockinger, Michael, 2003. "Testing for differences in the tails of stock-market returns," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 559-581, December.
    17. Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
    18. Segers, J.J.J., 2003. "Approximate Distributions of Clusters of Extremes," Discussion Paper 2003-91, Tilburg University, Center for Economic Research.
    19. Beirlant, J. & Schoutens, W. & Segers, J.J.J., 2004. "Mandelbrot's Extremism," Discussion Paper 2004-125, Tilburg University, Center for Economic Research.
    20. Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:22:y:2013:i:4:p:549-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.