IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005696.html
   My bibliography  Save this article

Cost-efficient vaccination protocols for network epidemiology

Author

Listed:
  • Petter Holme
  • Nelly Litvak

Abstract

We investigate methods to vaccinate contact networks—i.e. removing nodes in such a way that disease spreading is hindered as much as possible—with respect to their cost-efficiency. Any real implementation of such protocols would come with costs related both to the vaccination itself, and gathering of information about the network. Disregarding this, we argue, would lead to erroneous evaluation of vaccination protocols. We use the susceptible-infected-recovered model—the generic model for diseases making patients immune upon recovery—as our disease-spreading scenario, and analyze outbreaks on both empirical and model networks. For different relative costs, different protocols dominate. For high vaccination costs and low costs of gathering information, the so-called acquaintance vaccination is the most cost efficient. For other parameter values, protocols designed for query-efficient identification of the network’s largest degrees are most efficient.Author summary: Finding methods to identify important spreaders—and consequently protocols to identify individuals to vaccinate in targeted vaccination campaigns—is one of the most important topics of network theory. Earlier studies typically make some assumption about what information is available about the contact network that the disease spreads over. Then they try to optimize an objective function—either the average outbreak size in disease simulations, or (simpler) the size of the largest connected component. For public-health practitioners, gathering the network information cannot be detached from the decision process—their cost function includes the costs for both the vaccination itself and mapping of the network. This is the first paper to evaluate the cost efficiency of vaccination protocols—a problem that is much more relevant and not so much more complicated, than the oversimplified objective functions optimized in previous studies. We find a “no-free lunch” situation, where different protocols proposed in the past are most efficient at different cost scenarios. However, some methods are never cost efficient due to the amount of information they need. What protocol that is the best depends on network structure in a non-trivial way. We use both analytical and simulation techniques to reach these conclusions.

Suggested Citation

  • Petter Holme & Nelly Litvak, 2017. "Cost-efficient vaccination protocols for network epidemiology," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-18, September.
  • Handle: RePEc:plo:pcbi00:1005696
    DOI: 10.1371/journal.pcbi.1005696
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005696
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005696&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    2. Klovdahl, A.S. & Potterat, J.J. & Woodhouse, D.E. & Muth, J.B. & Muth, S.Q. & Darrow, W.W., 1994. "Social networks and infectious disease: The Colorado Springs study," Social Science & Medicine, Elsevier, vol. 38(1), pages 79-88, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Markovich, 2024. "Extremal properties of evolving networks: local dependence and heavy tails," Annals of Operations Research, Springer, vol. 339(3), pages 1839-1870, August.
    2. Benjamin Steinegger & Iacopo Iacopini & Andreia Sofia Teixeira & Alberto Bracci & Pau Casanova-Ferrer & Alberto Antonioni & Eugenio Valdano, 2022. "Non-selective distribution of infectious disease prevention may outperform risk-based targeting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    2. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    3. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
    4. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    5. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    6. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    7. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    8. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    10. Xia, Ling-Ling & Song, Yu-Rong & Li, Chan-Chan & Jiang, Guo-Ping, 2018. "Improved targeted immunization strategies based on two rounds of selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 540-547.
    11. Kyu-Min Lee & Kwang-Il Goh, 2016. "Strength of weak layers in cascading failures on multiplex networks: case of the international trade network," Papers 1603.05181, arXiv.org, revised May 2016.
    12. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    13. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    14. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    15. Wenguo Yang & Shengminjie Chen & Suixiang Gao & Ruidong Yan, 2020. "Boosting node activity by recommendations in social networks," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 825-847, October.
    16. Xiaodong Liu & Xiangke Liao & Shanshan Li & Si Zheng & Bin Lin & Jingying Zhang & Lisong Shao & Chenlin Huang & Liquan Xiao, 2017. "On the Shoulders of Giants: Incremental Influence Maximization in Evolving Social Networks," Complexity, Hindawi, vol. 2017, pages 1-14, September.
    17. Jonas, Adam B. & Young, April M. & Oser, Carrie B. & Leukefeld, Carl G. & Havens, Jennifer R., 2012. "OxyContin® as currency: OxyContin® use and increased social capital among rural Appalachian drug users," Social Science & Medicine, Elsevier, vol. 74(10), pages 1602-1609.
    18. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    19. David L Gibbs & Ilya Shmulevich, 2017. "Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    20. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.