IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i10d10.1057_s41274-016-0155-6.html
   My bibliography  Save this article

Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic

Author

Listed:
  • Jesica Armas

    (Open University of Catalonia)

  • Angel A. Juan

    (Open University of Catalonia)

  • Joan M. Marquès

    (Open University of Catalonia)

  • João Pedro Pedroso

    (University of Porto)

Abstract

The uncapacitated facility location problem (UFLP) is a popular combinatorial optimization problem with practical applications in different areas, from logistics to telecommunication networks. While most of the existing work in the literature focuses on minimizing total cost for the deterministic version of the problem, some degree of uncertainty (e.g., in the customers’ demands or in the service costs) should be expected in real-life applications. Accordingly, this paper proposes a simheuristic algorithm for solving the stochastic UFLP (SUFLP), where optimization goals other than the minimum expected cost can be considered. The development of this simheuristic is structured in three stages: (i) first, an extremely fast savings-based heuristic is introduced; (ii) next, the heuristic is integrated into a metaheuristic framework, and the resulting algorithm is tested against the optimal values for the UFLP; and (iii) finally, the algorithm is extended by integrating it with simulation techniques, and the resulting simheuristic is employed to solve the SUFLP. Some numerical experiments contribute to illustrate the potential uses of each of these solving methods, depending on the version of the problem (deterministic or stochastic) as well as on whether or not a real-time solution is required.

Suggested Citation

  • Jesica Armas & Angel A. Juan & Joan M. Marquès & João Pedro Pedroso, 2017. "Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1161-1176, October.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:10:d:10.1057_s41274-016-0155-6
    DOI: 10.1057/s41274-016-0155-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41274-016-0155-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-016-0155-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfred A. Kuehn & Michael J. Hamburger, 1963. "A Heuristic Program for Locating Warehouses," Management Science, INFORMS, vol. 9(4), pages 643-666, July.
    2. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    3. Isabel Correia & Francisco Saldanha Gama, 2015. "Facility Location Under Uncertainty," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 177-203, Springer.
    4. Resende, Mauricio G.C. & Werneck, Renato F., 2006. "A hybrid multistart heuristic for the uncapacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 174(1), pages 54-68, October.
    5. Donald Erlenkotter, 1978. "A Dual-Based Procedure for Uncapacitated Facility Location," Operations Research, INFORMS, vol. 26(6), pages 992-1009, December.
    6. Oscar Dominguez & Angel Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    7. James V. Jucker & Robert C. Carlson, 1976. "The Simple Plant-Location Problem under Uncertainty," Operations Research, INFORMS, vol. 24(6), pages 1045-1055, December.
    8. Ghosh, Diptesh, 2003. "Neighborhood search heuristics for the uncapacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 150(1), pages 150-162, October.
    9. Contreras, Ivan & Cordeau, Jean-François & Laporte, Gilbert, 2011. "Stochastic uncapacitated hub location," European Journal of Operational Research, Elsevier, vol. 212(3), pages 518-528, August.
    10. Miroslav Marić & Zorica Stanimirović & Srdjan Božović, 2015. "Hybrid metaheuristic method for determining locations for long-term health care facilities," Annals of Operations Research, Springer, vol. 227(1), pages 3-23, April.
    11. Sang Ahn & Colin Cooper & Gérard Cornuéjols & Alan Frieze, 1988. "Probabilistic Analysis of a Relaxation for the k -Median Problem," Mathematics of Operations Research, INFORMS, vol. 13(1), pages 1-31, February.
    12. Gerard Cornuejols & Marshall L. Fisher & George L. Nemhauser, 1977. "Exceptional Paper--Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms," Management Science, INFORMS, vol. 23(8), pages 789-810, April.
    13. CORNUEJOLS, Gérard & FISHER, Marshall L. & NEMHAUSER, George L., 1977. "Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms," LIDAM Reprints CORE 292, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Oscar Dominguez & Angel A. Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    15. Hodder, James E. & Jucker, James V., 1985. "A simple plant-location model for quantity-setting firms subject to price uncertainty," European Journal of Operational Research, Elsevier, vol. 21(1), pages 39-41, July.
    16. H. A. Eiselt & Gilbert Laporte & Jacques-François Thisse, 1993. "Competitive Location Models: A Framework and Bibliography," Transportation Science, INFORMS, vol. 27(1), pages 44-54, February.
    17. Michel, Laurent & Van Hentenryck, Pascal, 2004. "A simple tabu search for warehouse location," European Journal of Operational Research, Elsevier, vol. 157(3), pages 576-591, September.
    18. Snyder, Lawrence V. & Daskin, Mark S. & Teo, Chung-Piaw, 2007. "The stochastic location model with risk pooling," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1221-1238, June.
    19. M. A. Efroymson & T. L. Ray, 1966. "A Branch-Bound Algorithm for Plant Location," Operations Research, INFORMS, vol. 14(3), pages 361-368, June.
    20. Peter Kolesar & Warren E. Walker, 1974. "An Algorithm for the Dynamic Relocation of Fire Companies," Operations Research, INFORMS, vol. 22(2), pages 249-274, April.
    21. Hansen, P., 1976. "The simple plant location problem," Omega, Elsevier, vol. 4(3), pages 347-349.
    22. Vedat Verter, 2011. "Uncapacitated and Capacitated Facility Location Problems," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Foundations of Location Analysis, chapter 0, pages 25-37, Springer.
    23. Kurt Spielberg, 1969. "Algorithms for the Simple Plant-Location Problem with Some Side Conditions," Operations Research, INFORMS, vol. 17(1), pages 85-111, February.
    24. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    25. Kouvelis, Panagiotis & Kurawarwala, Abbas A. & Gutierrez, Genaro J., 1992. "Algorithms for robust single and multiple period layout planning for manufacturing systems," European Journal of Operational Research, Elsevier, vol. 63(2), pages 287-303, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Snežana Tadić & Mladen Krstić & Željko Stević & Miloš Veljović, 2023. "Locating Collection and Delivery Points Using the p -Median Location Problem," Logistics, MDPI, vol. 7(1), pages 1-17, February.
    2. Adil Baykasoğlu & Fehmi Burcin Ozsoydan & M. Emre Senol, 2020. "Weighted superposition attraction algorithm for binary optimization problems," Operational Research, Springer, vol. 20(4), pages 2555-2581, December.
    3. Angel A. Juan & Peter Keenan & Rafael Martí & Seán McGarraghy & Javier Panadero & Paula Carroll & Diego Oliva, 2023. "A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics," Annals of Operations Research, Springer, vol. 320(2), pages 831-861, January.
    4. Yagmur S. Gök & Silvia Padrón & Maurizio Tomasella & Daniel Guimarans & Cemalettin Ozturk, 2023. "Constraint-based robust planning and scheduling of airport apron operations through simheuristics," Annals of Operations Research, Springer, vol. 320(2), pages 795-830, January.
    5. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    6. Gabriel Mauricio Zambrano-Rey & Eliana María González-Neira & Gabriel Fernando Forero-Ortiz & María José Ocampo-Monsalve & Andrea Rivera-Torres, 2024. "Minimizing the expected maximum lateness for a job shop subject to stochastic machine breakdowns," Annals of Operations Research, Springer, vol. 338(1), pages 801-833, July.
    7. Juan F. Gomez & Javier Panadero & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan, 2022. "A Multi-Start Biased-Randomized Algorithm for the Capacitated Dispersion Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    2. Kurt Jörnsten & Andreas Klose, 2016. "An improved Lagrangian relaxation and dual ascent approach to facility location problems," Computational Management Science, Springer, vol. 13(3), pages 317-348, July.
    3. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    5. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    6. Monabbati, Ehsan & Kakhki, Hossein Taghizadeh, 2015. "On a class of subadditive duals for the uncapacitated facility location problem," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 118-131.
    7. Sharma, R.R.K. & Berry, V., 2007. "Developing new formulations and relaxations of single stage capacitated warehouse location problem (SSCWLP): Empirical investigation for assessing relative strengths and computational effort," European Journal of Operational Research, Elsevier, vol. 177(2), pages 803-812, March.
    8. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    9. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    10. Jaroslav Janáček & Ľuboš Buzna, 2008. "An acceleration of Erlenkotter-Körkel’s algorithms for the uncapacitated facility location problem," Annals of Operations Research, Springer, vol. 164(1), pages 97-109, November.
    11. Dupont, Lionel, 2008. "Branch and bound algorithm for a facility location problem with concave site dependent costs," International Journal of Production Economics, Elsevier, vol. 112(1), pages 245-254, March.
    12. Juan F. Gomez & Anna Martínez-Gavara & Javier Panadero & Angel A. Juan & Rafael Martí, 2024. "A Forward–Backward Simheuristic for the Stochastic Capacitated Dispersion Problem," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    13. Letchford, Adam N. & Miller, Sebastian J., 2014. "An aggressive reduction scheme for the simple plant location problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 674-682.
    14. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.
    15. Harkness, Joseph & ReVelle, Charles, 2003. "Facility location with increasing production costs," European Journal of Operational Research, Elsevier, vol. 145(1), pages 1-13, February.
    16. Francisco Casas & Claudio E. Torres & Ignacio Araya, 2022. "A heuristic search based on diversity for solving combinatorial problems," Journal of Heuristics, Springer, vol. 28(3), pages 287-328, June.
    17. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    18. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    19. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2017. "Formulations and Approximation Algorithms for Multilevel Uncapacitated Facility Location," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 767-779, November.
    20. Fathali Firoozi, 2008. "Boundary Distributions in Testing Inequality Hypotheses," Working Papers 0046, College of Business, University of Texas at San Antonio.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:10:d:10.1057_s41274-016-0155-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.