IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v103y2006i2p633-647.html
   My bibliography  Save this article

Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times

Author

Listed:
  • Ganesan, Viswanath Kumar
  • Sivakumar, Appa Iyer

Abstract

No abstract is available for this item.

Suggested Citation

  • Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
  • Handle: RePEc:eee:proeco:v:103:y:2006:i:2:p:633-647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(06)00038-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eglese, R. W., 1990. "Simulated annealing: A tool for operational research," European Journal of Operational Research, Elsevier, vol. 46(3), pages 271-281, June.
    2. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    3. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    4. Jose A. Ventura & Michael X. Weng, 1995. "Minimizing Single-Machine Completion Time Variance," Management Science, INFORMS, vol. 41(9), pages 1448-1455, September.
    5. Vina Vani & M. Raghavachari, 1987. "Deterministic and Random Single Machine Sequencing with Variance Minimization," Operations Research, INFORMS, vol. 35(1), pages 111-120, February.
    6. G. B. McMahon & P. G. Burton, 1967. "Flow-Shop Scheduling with the Branch-and-Bound Method," Operations Research, INFORMS, vol. 15(3), pages 473-481, June.
    7. Kubiak, Wieslaw & Cheng, Jinliang & Kovalyov, Mikhail Y., 2002. "Fast fully polynomial approximation schemes for minimizing completion time variance," European Journal of Operational Research, Elsevier, vol. 137(2), pages 303-309, March.
    8. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    9. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    10. Taillard, E., 1990. "Some efficient heuristic methods for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 47(1), pages 65-74, July.
    11. Nagar, Amit & Haddock, Jorge & Heragu, Sunderesh, 1995. "Multiple and bicriteria scheduling: A literature survey," European Journal of Operational Research, Elsevier, vol. 81(1), pages 88-104, February.
    12. Alan G. Merten & Mervin E. Muller, 1972. "Variance Minimization in Single Machine Sequencing Problems," Management Science, INFORMS, vol. 18(9), pages 518-528, May.
    13. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    14. Samuel Eilon & I. G. Chowdhury, 1977. "Minimising Waiting Time Variance in the Single Machine Problem," Management Science, INFORMS, vol. 23(6), pages 567-575, February.
    15. Uttarayan Bagchi & Yih‐Long Chang & Robert S. Sullivan, 1987. "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 739-751, October.
    16. Mosheiov, Gur, 2004. "Simultaneous minimization of total completion time and total deviation of job completion times," European Journal of Operational Research, Elsevier, vol. 157(2), pages 296-306, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    2. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    3. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    4. Gowrishankar, K. & Rajendran, Chandrasekharan & Srinivasan, G., 2001. "Flow shop scheduling algorithms for minimizing the completion time variance and the sum of squares of completion time deviations from a common due date," European Journal of Operational Research, Elsevier, vol. 132(3), pages 643-665, August.
    5. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    6. V. Rajendra Prasad & D. K. Manna, 1997. "Minimization of expected variance of completion times on single machine for stochastic jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 97-108, February.
    7. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    8. J. Steve Davis & John J. Kanet, 1993. "Single‐machine scheduling with early and tardy completion costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 85-101, February.
    9. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    10. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
    11. Nasini, Stefano & Nessah, Rabia, 2022. "A multi-machine scheduling solution for homogeneous processing: Asymptotic approximation and applications," International Journal of Production Economics, Elsevier, vol. 251(C).
    12. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    13. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    14. Framinan, Jose M. & Leisten, Rainer & Ruiz-Usano, Rafael, 2002. "Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 559-569, September.
    15. Jelke J. Hoorn, 2018. "The Current state of bounds on benchmark instances of the job-shop scheduling problem," Journal of Scheduling, Springer, vol. 21(1), pages 127-128, February.
    16. Nessah, Rabia & Chu, Chengbin, 2010. "A lower bound for weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1221-1226, December.
    17. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    18. Gajpal, Yuvraj & Rajendran, Chandrasekharan, 2006. "An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops," International Journal of Production Economics, Elsevier, vol. 101(2), pages 259-272, June.
    19. Pannee Suanpang & Pitchaya Jamjuntr & Kittisak Jermsittiparsert & Phuripoj Kaewyong, 2022. "Tourism Service Scheduling in Smart City Based on Hybrid Genetic Algorithm Simulated Annealing Algorithm," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    20. Francis Sourd & Wim Nuijten, 2000. "Multiple-Machine Lower Bounds for Shop-Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 341-352, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:103:y:2006:i:2:p:633-647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.