IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p121-d308291.html
   My bibliography  Save this article

Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems

Author

Listed:
  • Christophe Sauvey

    (Université de Lorraine, LGIPM, F-57000 Metz, France)

  • Wajdi Trabelsi

    (ICN Business School, LGIPM, F-57000 Metz, France)

  • Nathalie Sauer

    (Université de Lorraine, LGIPM, F-57000 Metz, France)

Abstract

In this paper, we consider a job-shop scheduling problem with mixed blocking constraints. Contrary to most previous studies, where no blocking or only one type of blocking constraint was used among successive operations, we assume that, generally, we may address several different blocking constraints in the same scheduling problem depending on the intermediate storage among machines, the characteristics of the machines, the technical constraints, and even the jobs. Our objective was to schedule a set of jobs to minimize the makespan. Thus, we propose, for the first time, a mathematical model of the job-shop problem taking into account the general case of mixed blocking constraints, and the results were obtained using Mosel Xpress software. Then, after explaining why and how groups of jobs have to be processed, a blocking constraint conflict-free warranted evaluation function is proposed and tested with the particle swarm optimization and genetic algorithm methods. The results prove that we obtained a near-optimal solution to this problem in a very short time.

Suggested Citation

  • Christophe Sauvey & Wajdi Trabelsi & Nathalie Sauer, 2020. "Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:121-:d:308291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James R. Jackson, 1956. "An extension of Johnson's results on job IDT scheduling," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(3), pages 201-203, September.
    2. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    3. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    4. Robert L. Burdett & Erhan Kozan, 2004. "The Assignment Of Individual Renewable Resources In Scheduling," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 355-377.
    5. Wajdi Trabelsi & Christophe Sauvey & Nathalie Sauer, 2012. "Heuristics and metaheuristics for solving mixed blocking constraints flowshop scheduling problems," Post-Print hal-01515219, HAL.
    6. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    7. Abdelhakim AitZai & Mourad Boudhar, 2013. "Parallel branch-and-bound and parallel PSO algorithms for job shop scheduling problem with blocking," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 16(1), pages 14-37.
    8. Grabowski, Jozef & Pempera, Jaroslaw, 2000. "Sequencing of jobs in some production system," European Journal of Operational Research, Elsevier, vol. 125(3), pages 535-550, September.
    9. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Saqlain & S. Ali & J. Y. Lee, 2023. "A Monte-Carlo tree search algorithm for the flexible job-shop scheduling in manufacturing systems," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 548-571, June.
    2. Anran Zhao & Peng Liu & Xiyu Gao & Guotai Huang & Xiuguang Yang & Yuan Ma & Zheyu Xie & Yunfeng Li, 2022. "Data-Mining-Based Real-Time Optimization of the Job Shop Scheduling Problem," Mathematics, MDPI, vol. 10(23), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Mauricio Zambrano-Rey & Eliana María González-Neira & Gabriel Fernando Forero-Ortiz & María José Ocampo-Monsalve & Andrea Rivera-Torres, 2024. "Minimizing the expected maximum lateness for a job shop subject to stochastic machine breakdowns," Annals of Operations Research, Springer, vol. 338(1), pages 801-833, July.
    2. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    3. Evgeny Gafarov & Frank Werner, 2019. "Two-Machine Job-Shop Scheduling with Equal Processing Times on Each Machine," Mathematics, MDPI, vol. 7(3), pages 1-11, March.
    4. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    5. Tamssaouet, Karim & Dauzère-Pérès, Stéphane & Knopp, Sebastian & Bitar, Abdoul & Yugma, Claude, 2022. "Multiobjective optimization for complex flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 296(1), pages 87-100.
    6. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    7. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    8. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    9. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    10. Xin Li & Richard Y. K. Fung, 2016. "Optimal K-unit cycle scheduling of two-cluster tools with residency constraints and general robot moving times," Journal of Scheduling, Springer, vol. 19(2), pages 165-176, April.
    11. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    12. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    13. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    14. Monaci, Marta & Agasucci, Valerio & Grani, Giorgio, 2024. "An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents," European Journal of Operational Research, Elsevier, vol. 312(3), pages 910-926.
    15. Mehdi Mrad & Anis Gharbi & Mohamed Haouari & Mohamed Kharbeche, 2016. "An optimization-based heuristic for the machine reassignment problem," Annals of Operations Research, Springer, vol. 242(1), pages 115-132, July.
    16. Paul Corry & Christian Bierwirth, 2019. "The Berth Allocation Problem with Channel Restrictions," Transportation Science, INFORMS, vol. 53(3), pages 708-727, May.
    17. Ricardo Pérez-Rodríguez, 2024. "A Radial Memetic Algorithm to Resolve the No-Wait Job-Shop Scheduling Problem," Mathematics, MDPI, vol. 12(21), pages 1-15, October.
    18. Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
    19. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    20. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:121-:d:308291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.