IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v292y2020i2d10.1007_s10479-018-3091-9.html
   My bibliography  Save this article

Solving joint chance constrained problems using regularization and Benders’ decomposition

Author

Listed:
  • Lukáš Adam

    (Southern University of Science and Technology
    The Czech Academy of Sciences, Institute of Information Theory and Automation)

  • Martin Branda

    (The Czech Academy of Sciences, Institute of Information Theory and Automation
    Charles University)

  • Holger Heitsch

    (Weierstrass Institute for Applied Analysis and Stochastics)

  • René Henrion

    (Weierstrass Institute for Applied Analysis and Stochastics)

Abstract

We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts from a slave problem. Since the number of variables of the slave problem equals to the number of scenarios, we express its solution in a closed form. We show convergence properties of the solutions. On a gas network design problem, we perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with the continuous distribution.

Suggested Citation

  • Lukáš Adam & Martin Branda & Holger Heitsch & René Henrion, 2020. "Solving joint chance constrained problems using regularization and Benders’ decomposition," Annals of Operations Research, Springer, vol. 292(2), pages 683-709, September.
  • Handle: RePEc:spr:annopr:v:292:y:2020:i:2:d:10.1007_s10479-018-3091-9
    DOI: 10.1007/s10479-018-3091-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3091-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3091-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    3. Darinka Dentcheva & Gabriela Martinez, 2012. "Augmented Lagrangian method for probabilistic optimization," Annals of Operations Research, Springer, vol. 200(1), pages 109-130, November.
    4. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    5. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    6. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    7. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    8. Patrizia Beraldi & Maria Bruni, 2010. "An exact approach for solving integer problems under probabilistic constraints with random technology matrix," Annals of Operations Research, Springer, vol. 177(1), pages 127-137, June.
    9. X. M. Hu & D. Ralph, 2004. "Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 365-390, November.
    10. Hailin Sun & Huifu Xu & Yong Wang, 2014. "Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 257-284, April.
    11. René Henrion & Andris Möller, 2012. "A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 475-488, August.
    12. T. González Grandón & H. Heitsch & R. Henrion, 2017. "A joint model of probabilistic/robust constraints for gas transport management in stationary networks," Computational Management Science, Springer, vol. 14(3), pages 443-460, July.
    13. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    14. Feng Shan & Liwei Zhang & Xiantao Xiao, 2014. "A Smoothing Function Approach to Joint Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 181-199, October.
    15. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    16. Martin Branda & Jitka Dupačová, 2012. "Approximation and contamination bounds for probabilistic programs," Annals of Operations Research, Springer, vol. 193(1), pages 3-19, March.
    17. Willem Haneveld & Maarten Vlerk, 2006. "Integrated Chance Constraints: Reduced Forms and an Algorithm," Computational Management Science, Springer, vol. 3(4), pages 245-269, September.
    18. Claudia Gotzes & Holger Heitsch & René Henrion & Rüdiger Schultz, 2016. "On the quantification of nomination feasibility in stationary gas networks with random load," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 427-457, October.
    19. J. O. Royset & E. Polak, 2007. "Extensions of Stochastic Optimization Results to Problems with System Failure Probability Functions," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aigner, Kevin-Martin & Clarner, Jan-Patrick & Liers, Frauke & Martin, Alexander, 2022. "Robust approximation of chance constrained DC optimal power flow under decision-dependent uncertainty," European Journal of Operational Research, Elsevier, vol. 301(1), pages 318-333.
    2. Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    2. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    3. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    4. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    5. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    6. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    7. Wim Ackooij & Pedro Pérez-Aros, 2020. "Gradient Formulae for Nonlinear Probabilistic Constraints with Non-convex Quadratic Forms," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 239-269, April.
    8. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    9. Martin Branda & Štěpán Hájek, 2017. "Flow-based formulations for operational fixed interval scheduling problems with random delays," Computational Management Science, Springer, vol. 14(1), pages 161-177, January.
    10. Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
    11. Shao-Wei Lam & Tsan Sheng Ng & Melvyn Sim & Jin-Hwa Song, 2013. "Multiple Objectives Satisficing Under Uncertainty," Operations Research, INFORMS, vol. 61(1), pages 214-227, February.
    12. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    13. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    14. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    15. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    16. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    17. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    18. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    19. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    20. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:292:y:2020:i:2:d:10.1007_s10479-018-3091-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.