IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v264y2018i1d10.1007_s10479-017-2678-x.html
   My bibliography  Save this article

Dispatching algorithm for production programming of flexible job-shop systems in the smart factory industry

Author

Listed:
  • Miguel A. Ortíz

    (Universidad de la Costa CUC)

  • Leidy E. Betancourt

    (Universidad de la Costa CUC)

  • Kevin Parra Negrete

    (Universidad de la Costa CUC)

  • Fabio Felice

    (University of Cassino and Southern Lazio)

  • Antonella Petrillo

    (University of Naples “Parthenope”)

Abstract

In today highly competitive and globalized markets, an efficient use of production resources is necessary for manufacturing enterprises. In this research, the problem of scheduling and sequencing of manufacturing system is presented. A flexible job shop problem sequencing problem is analyzed in detail. After formulating this problem mathematically, a new model is proposed. This problem is not only theoretically interesting, but also practically relevant. An illustrative example is also conducted to demonstrate the applicability of the proposed model.

Suggested Citation

  • Miguel A. Ortíz & Leidy E. Betancourt & Kevin Parra Negrete & Fabio Felice & Antonella Petrillo, 2018. "Dispatching algorithm for production programming of flexible job-shop systems in the smart factory industry," Annals of Operations Research, Springer, vol. 264(1), pages 409-433, May.
  • Handle: RePEc:spr:annopr:v:264:y:2018:i:1:d:10.1007_s10479-017-2678-x
    DOI: 10.1007/s10479-017-2678-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2678-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2678-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prot, D. & Bellenguez-Morineau, O. & Lahlou, C., 2013. "New complexity results for parallel identical machine scheduling problems with preemption, release dates and regular criteria," European Journal of Operational Research, Elsevier, vol. 231(2), pages 282-287.
    2. A. Bożek & M. Wysocki, 2015. "Flexible job shop with continuous material flow," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1273-1290, February.
    3. Alper Türkyılmaz & Serol Bulkan, 2015. "A hybrid algorithm for total tardiness minimisation in flexible job shop: genetic algorithm with parallel VNS execution," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1832-1848, March.
    4. Kurz, Mary E. & Askin, Ronald G., 2004. "Scheduling flexible flow lines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 159(1), pages 66-82, November.
    5. Kacem, Imed & Hammadi, Slim & Borne, Pierre, 2002. "Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(3), pages 245-276.
    6. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmet Kursad Turker & Adnan Aktepe & Ali Firat Inal & Olcay Ozge Ersoz & Gulesin Sena Das & Burak Birgoren, 2019. "A Decision Support System for Dynamic Job-Shop Scheduling Using Real-Time Data with Simulation," Mathematics, MDPI, vol. 7(3), pages 1-19, March.
    2. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vilcot, Geoffrey & Billaut, Jean-Charles, 2008. "A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 190(2), pages 398-411, October.
    2. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    3. Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "Intelligent Scheduling for Underground Mobile Mining Equipment," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    4. Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
    5. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    6. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    7. Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
    8. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    9. Baykasoglu, Adil & ÖzbakIr, Lale, 2010. "Analyzing the effect of dispatching rules on the scheduling performance through grammar based flexible scheduling system," International Journal of Production Economics, Elsevier, vol. 124(2), pages 369-381, April.
    10. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    11. Choo Jun Tan & Siew Chin Neoh & Chee Peng Lim & Samer Hanoun & Wai Peng Wong & Chu Kong Loo & Li Zhang & Saeid Nahavandi, 2019. "Application of an evolutionary algorithm-based ensemble model to job-shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 879-890, February.
    12. Caner TaskIn, Z. & Tamer Ünal, A., 2009. "Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products," European Journal of Operational Research, Elsevier, vol. 199(1), pages 252-261, November.
    13. Zeynep Ceylan & Hakan Tozan & Serol Bulkan, 2021. "A coordinated scheduling problem for the supply chain in a flexible job shop machine environment," Operational Research, Springer, vol. 21(2), pages 875-900, June.
    14. K A H Kobbacy & S Vadera & M H Rasmy, 2007. "AI and OR in management of operations: history and trends," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 10-28, January.
    15. Julien Autuori & Faicel Hnaien & Farouk Yalaoui, 2016. "A mapping technique for better solution exploration: NSGA-II adaptation," Journal of Heuristics, Springer, vol. 22(1), pages 89-123, February.
    16. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    17. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    18. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    19. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    20. Miguel A. Fernández Pérez & Fernanda M. P. Raupp, 2016. "A Newton-based heuristic algorithm for multi-objective flexible job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 409-416, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:264:y:2018:i:1:d:10.1007_s10479-017-2678-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.