IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v190y2008i2p398-411.html
   My bibliography  Save this article

A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem

Author

Listed:
  • Vilcot, Geoffrey
  • Billaut, Jean-Charles

Abstract

This paper deals with a general job shop scheduling problem with multiple constraints, coming from printing and boarding industry. The objective is the minimization of two criteria, the makespan and the maximum lateness, and we are interested in finding an approximation of the Pareto frontier. We propose a fast and elitist genetic algorithm based on NSGA-II for solving the problem. The initial population of this algorithm is either randomly generated or partially generated by using a tabu search algorithm, that minimizes a linear combination of the two criteria. Both the genetic and the tabu search algorithms are tested on benchmark instances from flexible job shop literature and computational results show the interest of both methods to obtain an efficient and effective resolution method.

Suggested Citation

  • Vilcot, Geoffrey & Billaut, Jean-Charles, 2008. "A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 190(2), pages 398-411, October.
  • Handle: RePEc:eee:ejores:v:190:y:2008:i:2:p:398-411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00632-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    2. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    3. Kacem, Imed & Hammadi, Slim & Borne, Pierre, 2002. "Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(3), pages 245-276.
    4. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    5. Ho, Nhu Binh & Tay, Joc Cing & Lai, Edmund M.-K., 2007. "An effective architecture for learning and evolving flexible job-shop schedules," European Journal of Operational Research, Elsevier, vol. 179(2), pages 316-333, June.
    6. Stéphane Dauzère-Pérès & Jan Paulli, 1997. "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, Springer, vol. 70(0), pages 281-306, April.
    7. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    8. Paulli, Jan, 1995. "A hierarchical approach for the FMS scheduling problem," European Journal of Operational Research, Elsevier, vol. 86(1), pages 32-42, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Kress & David Müller & Jenny Nossack, 2019. "A worker constrained flexible job shop scheduling problem with sequence-dependent setup times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 179-217, March.
    2. Lunardi, Willian T. & Birgin, Ernesto G. & Ronconi, Débora P. & Voos, Holger, 2021. "Metaheuristics for the online printing shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 419-441.
    3. Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
    4. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    5. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    6. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    7. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    8. Habibeh Nazif, 2015. "Solving Job Shop Scheduling Problem Using an Ant Colony Algorithm," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 5(5), pages 261-268, May.
    9. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    2. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    3. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    4. Drótos, Márton & Erdos, Gábor & Kis, Tamás, 2009. "Computing lower and upper bounds for a large-scale industrial job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 296-306, August.
    5. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    6. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    7. Sabuncuoglu, I. & Bayiz, M., 1999. "Job shop scheduling with beam search," European Journal of Operational Research, Elsevier, vol. 118(2), pages 390-412, October.
    8. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    9. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    10. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    11. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    12. Miguel A. Fernández Pérez & Fernanda M. P. Raupp, 2016. "A Newton-based heuristic algorithm for multi-objective flexible job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 409-416, April.
    13. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    14. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    15. González, Miguel A. & Vela, Camino R. & Varela, Ramiro, 2015. "Scatter search with path relinking for the flexible job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 35-45.
    16. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
    17. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    18. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    19. Li-Ning Xing & Ying-Wu Chen & Ke-Wei Yang, 2011. "Multi-population interactive coevolutionary algorithm for flexible job shop scheduling problems," Computational Optimization and Applications, Springer, vol. 48(1), pages 139-155, January.
    20. Groflin, Heinz & Klinkert, Andreas, 2007. "Feasible insertions in job shop scheduling, short cycles and stable sets," European Journal of Operational Research, Elsevier, vol. 177(2), pages 763-785, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:190:y:2008:i:2:p:398-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.