IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i2d10.1007_s12351-020-00615-0.html
   My bibliography  Save this article

A coordinated scheduling problem for the supply chain in a flexible job shop machine environment

Author

Listed:
  • Zeynep Ceylan

    (Samsun University)

  • Hakan Tozan

    (Medipol University)

  • Serol Bulkan

    (Marmara University)

Abstract

In this study, a new coordinated scheduling problem is proposed for the multi-stage supply chain network. A multi-product and multi-period supply chain structure has been developed, including a factory, warehouses, and customers. Furthermore, the flexible job shop scheduling problem is integrated into the manufacturing part of the supply chain network to make the structure more comprehensive. In the proposed problem, each product includes a sequence of operations and is processed on a set of multi-functional machines at the factory to produce the final product. Final products are delivered to the warehouses to meet customers’ demands. If the demands of customers are not fulfilled, the shortage in the form of backorder may occur at any period. The problem is expressed as a bi-objective mixed-integer linear programming (MILP) model. The first objective function is to minimize the total supply chain costs. On the other hand, the second objective function aims to minimize the makespan in all periods. A numerical example is presented to evaluate the performance of the proposed MILP model. Five multi-objective decision-making (MODM) methods, namely weighted sum, goal programming, goal attainment, LP metric, and max–min, are used to provide different alternative solutions to the decision-makers. The performance of the methods is evaluated according to both objective function values and CPU time criteria. In order to select the best solution technique, the displaced ideal solution method is applied. The results reveal that the weighted sum method is the best among all MODM methods.

Suggested Citation

  • Zeynep Ceylan & Hakan Tozan & Serol Bulkan, 2021. "A coordinated scheduling problem for the supply chain in a flexible job shop machine environment," Operational Research, Springer, vol. 21(2), pages 875-900, June.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:2:d:10.1007_s12351-020-00615-0
    DOI: 10.1007/s12351-020-00615-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00615-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00615-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi-Long Chen & George L. Vairaktarakis, 2005. "Integrated Scheduling of Production and Distribution Operations," Management Science, INFORMS, vol. 51(4), pages 614-628, April.
    2. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    3. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    4. Alper Türkyılmaz & Serol Bulkan, 2015. "A hybrid algorithm for total tardiness minimisation in flexible job shop: genetic algorithm with parallel VNS execution," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1832-1848, March.
    5. Setareh Mohammadi & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines : A case study from a furniture manufacturing company," Post-Print hal-02312373, HAL.
    6. Pei, Jun & Liu, Xinbao & Fan, Wenjuan & Pardalos, Panos M. & Lu, Shaojun, 2019. "A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers," Omega, Elsevier, vol. 82(C), pages 55-69.
    7. Mohammadi, S. & Al-e-Hashem, S.M.J. Mirzapour & Rekik, Y., 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company," International Journal of Production Economics, Elsevier, vol. 219(C), pages 347-359.
    8. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    9. Soheyl Khalilpourazari & Alireza Arshadi Khamseh, 2019. "Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application," Annals of Operations Research, Springer, vol. 283(1), pages 355-393, December.
    10. Setareh Mohammadi & Mirzapour Al-E-Hashem Seyed Mohammad Javad & Yacine Rekik, 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines : A case study from a furniture manufacturing company," Post-Print hal-02275848, HAL.
    11. S. Mohammadi & S. Al-E-Hashem & Yacine Rekik, 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company," Post-Print hal-02194222, HAL.
    12. U. Manoj & Jatinder Gupta & Sushil Gupta & Chelliah Sriskandarajah, 2008. "Supply chain scheduling: Just-in-time environment," Annals of Operations Research, Springer, vol. 161(1), pages 53-86, July.
    13. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    14. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yu & Ropke, Stefan & Wen, Min & Bergh, Simon, 2023. "The mobile production vehicle routing problem: Using 3D printing in last mile distribution," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1407-1423.
    2. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    3. Alexis Robbes & Yannick Kergosien & Virginie André & Jean-Charles Billaut, 2022. "Efficient heuristics to minimize the total tardiness of chemotherapy drug production and delivery," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 785-820, September.
    4. Ling Liu & Sen Liu, 2020. "Integrated Production and Distribution Problem of Perishable Products with a Minimum Total Order Weighted Delivery Time," Mathematics, MDPI, vol. 8(2), pages 1-18, January.
    5. Chevroton, Hugo & Kergosien, Yannick & Berghman, Lotte & Billaut, Jean-Charles, 2021. "Solving an integrated scheduling and routing problem with inventory, routing and penalty costs," European Journal of Operational Research, Elsevier, vol. 294(2), pages 571-589.
    6. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    7. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    8. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    9. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    10. S. Mohammadi & S. Al-E-Hashem & Yacine Rekik, 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company," Post-Print hal-02194222, HAL.
    11. Ivan Kristianto Singgih & Onyu Yu & Byung-In Kim & Jeongin Koo & Seungdoe Lee, 2020. "Production scheduling problem in a factory of automobile component primer painting," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1483-1496, August.
    12. Berghman, Lotte & Kergosien, Yannick & Billaut, Jean-Charles, 2023. "A review on integrated scheduling and outbound vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 1-23.
    13. Feng Li & Zhou Xu & Zhi-Long Chen, 2020. "Production and Transportation Integration for Commit-to-Delivery Mode with General Shipping Costs," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1012-1029, October.
    14. Lixin Tang & Feng Li & Zhi-Long Chen, 2019. "Integrated Scheduling of Production and Two-Stage Delivery of Make-to-Order Products: Offline and Online Algorithms," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 493-514, July.
    15. Benjamin C. Shelbourne & Maria Battarra & Chris N. Potts, 2017. "The Vehicle Routing Problem with Release and Due Dates," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 705-723, November.
    16. Vosooghi, Zeinab & Mirzapour Al-e-hashem, S.M.J. & Lahijanian, Behshad, 2022. "Scenario-based redesigning of a relief supply-chain network by considering humanitarian constraints, triage, and volunteers’ help," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    17. Mohammadi, S. & Al-e-Hashem, S.M.J. Mirzapour & Rekik, Y., 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company," International Journal of Production Economics, Elsevier, vol. 219(C), pages 347-359.
    18. Xin Feng & Yongxi Cheng & Feifeng Zheng & Yinfeng Xu, 2016. "Online integrated production–distribution scheduling problems without preemption," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1569-1585, May.
    19. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    20. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:2:d:10.1007_s12351-020-00615-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.