IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i4p1273-1290.html
   My bibliography  Save this article

Flexible job shop with continuous material flow

Author

Listed:
  • A. Bożek
  • M. Wysocki

Abstract

A new scheduling problem, the continuous flow flexible job shop (CF-FJS) is proposed. The formulation combines the well-known flexible job shop (FJS) problem and a dedicated continuous material flow model (MFM). In the MFM, operations are represented by material flow functions derived by integration of arbitrarily defined speed patterns. Two main concepts of the MFM formalism, i.e. variable speed of processing and continuous material flow, lead to position-dependent processing times and overlapping in operations which extend standard FJS formulation. Properties of the CF-FJS are investigated. A tabu search sched uling algorithm utilising these properties is proposed. Effective neighbourhood functions are defined based on elimination approaches. Two auxiliary procedures: search intensification level switching and fast feasibility detection are added to improve algorithm efficiency. The algorithm is verified using dedicated benchmark instances which comprise non-trivial representations of the CF-FJS specific features, i.e. machine efficiency patterns and minimum inter-operation buffers. The research is motivated by task scheduling in a fastener factory, but the presented results can be useful in many domains, such as production of granular goods, steel details, glass and fluids. The solution can be used in real-world applications. The published results can be helpful in testing new CF-FJS scheduling algorithms.

Suggested Citation

  • A. Bożek & M. Wysocki, 2015. "Flexible job shop with continuous material flow," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1273-1290, February.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:4:p:1273-1290
    DOI: 10.1080/00207543.2014.955925
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2014.955925
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2014.955925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Bożek, 2020. "Energy Cost-Efficient Task Positioning in Manufacturing Systems," Energies, MDPI, vol. 13(19), pages 1-21, September.
    2. Miguel A. Ortíz & Leidy E. Betancourt & Kevin Parra Negrete & Fabio Felice & Antonella Petrillo, 2018. "Dispatching algorithm for production programming of flexible job-shop systems in the smart factory industry," Annals of Operations Research, Springer, vol. 264(1), pages 409-433, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:4:p:1273-1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.