IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v253y2017i2d10.1007_s10479-016-2194-4.html
   My bibliography  Save this article

Optimizing high-level nuclear waste disposal within a deep geologic repository

Author

Listed:
  • Benjamin Johnson

    (Colorado School of Mines)

  • Alexandra Newman

    (Colorado School of Mines)

  • Jeffrey King

    (Colorado School of Mines)

Abstract

Many countries produce significant quantities of nuclear waste which will have to be permanently and safely placed in a repository. We develop a mixed integer program that determines where to place each waste package of a specific waste type in a given time period with the goal of minimizing heat load concentration within a repository. Operational constraints include: (1) heat load limitations, (2) location and time at which waste packages can be placed, and (3) the number of waste packages that must be placed based on type and time period. Although applicable to other settings, we use the Yucca Mountain repository in Nevada as a case study. Each of the three objectives used for minimizing heat load concentration improves upon existing greedy and sequential filling methods. Existing filling methods give at least a 17 % to an 873 % higher, i.e., worse, heat load concentration in the repository with respect to these objectives than do optimal methods. Enhancements, i.e., symmetry reduction constraints, perturbations, and heuristics, increase the size of solvable problem instances. This research can be applied to any deep geologic repository planned for operation around the world with slight modifications to incorporate site-specific objectives and constraints.

Suggested Citation

  • Benjamin Johnson & Alexandra Newman & Jeffrey King, 2017. "Optimizing high-level nuclear waste disposal within a deep geologic repository," Annals of Operations Research, Springer, vol. 253(2), pages 733-755, June.
  • Handle: RePEc:spr:annopr:v:253:y:2017:i:2:d:10.1007_s10479-016-2194-4
    DOI: 10.1007/s10479-016-2194-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2194-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2194-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giannikos, Ioannis, 1998. "A multiobjective programming model for locating treatment sites and routing hazardous wastes," European Journal of Operational Research, Elsevier, vol. 104(2), pages 333-342, January.
    2. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    3. A. M. Geoffrion & R. Nauss, 1977. "Exceptional Paper--Parametric and Postoptimality Analysis in Integer Linear Programming," Management Science, INFORMS, vol. 23(5), pages 453-466, January.
    4. Kouichi Taji & Jason K. Levy & Jens Hartmann & Michelle L. Bell & Richard M. Anderson & Benjamin F. Hobbs & Tom Feglar, 2005. "Identifying potential repositories for radioactive waste: multiple criteria decision analysis and critical infrastructure systems," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 1(4), pages 404-422.
    5. Hanif D. Sherali & J. Cole Smith, 2001. "Improving Discrete Model Representations via Symmetry Considerations," Management Science, INFORMS, vol. 47(10), pages 1396-1407, October.
    6. Gerald Brown & Joseph Keegan & Brian Vigus & Kevin Wood, 2001. "The Kellogg Company Optimizes Production, Inventory, and Distribution," Interfaces, INFORMS, vol. 31(6), pages 1-15, December.
    7. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    8. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    9. Tung, Dang Vu & Pinnoi, Anulark, 2000. "Vehicle routing-scheduling for waste collection in Hanoi," European Journal of Operational Research, Elsevier, vol. 125(3), pages 449-468, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Outi Montonen & Ville-Pekka Eronen & Timo Ranta & Jani A. S. Huttunen & Marko M. Mäkelä, 2020. "Multiobjective Mixed Integer Nonlinear Model to Plan the Schedule for the Final Disposal of the Spent Nuclear Fuel in Finland," Mathematics, MDPI, vol. 8(4), pages 1-29, April.
    2. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Pablo Fernández-Arias & Diego Vergara & Álvaro Antón-Sancho, 2023. "Global Review of International Nuclear Waste Management," Energies, MDPI, vol. 16(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    2. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    3. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    4. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2018. "A new methodology for the open-pit mine production scheduling problem," Omega, Elsevier, vol. 81(C), pages 169-182.
    5. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    6. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    7. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    8. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.
    9. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A local branching heuristic for the open pit mine production scheduling problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 261-271.
    10. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    11. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    12. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    13. Lin, Jingsi & Asad, Mohammad Waqar Ali & Topal, Erkan & Chang, Ping & Huang, Jinxin & Lin, Wei, 2024. "A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation," Resources Policy, Elsevier, vol. 91(C).
    14. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    15. Tabesh, Mohammad & Moradi Afrapoli, Ali & Askari-Nasab, Hooman, 2023. "A two-stage simultaneous optimization of NPV and throughput in production planning of open pit mines," Resources Policy, Elsevier, vol. 80(C).
    16. Amin Mousavi & Erhan Kozan & Shi Qiang Liu, 2016. "Comparative analysis of three metaheuristics for short-term open pit block sequencing," Journal of Heuristics, Springer, vol. 22(3), pages 301-329, June.
    17. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    18. Leo Liberti & James Ostrowski, 2014. "Stabilizer-based symmetry breaking constraints for mathematical programs," Journal of Global Optimization, Springer, vol. 60(2), pages 183-194, October.
    19. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    20. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:253:y:2017:i:2:d:10.1007_s10479-016-2194-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.