IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v242y2016i2d10.1007_s10479-013-1526-x.html
   My bibliography  Save this article

Heuristic approach on dynamic lot-sizing model for durable products with end-of-use constraints

Author

Listed:
  • Yongjian Li

    (Nankai University)

  • Xiaoqiang Cai

    (The Chinese University of Hong Kong)

  • Lei Xu

    (Nankai University
    Tianjin University of Technology)

  • Wenxia Yang

    (Nankai University)

Abstract

A version of the dynamic lot-sizing (DLS) problem involving durable products with end-of-use constraints is analyzed in this paper. First, we mathematically formulate this problem, then certain properties are derived to construct the structure of the optimal solution. Next, based on these properties, a recursive optimization algorithm is proposed for a single-item problem. Moreover, an approximate algorithm is designed on the basis of the optimization algorithm, with linear computational complexity. A heuristic approach is proposed for solving the two-item DLS problem. The difficulty in solving this problem lies in its decomposition into item-level subproblems while ensuring the feasibility of the solution. The proposed technique aims to resolve this issue by combining the capabilities of Lagrangian relaxation to decompose the problem into smaller subproblems, and a genetic algorithm (GA) is used to update the Lagrangian multipliers. Further, the computational results obtained using the proposed approach are enumerated to demonstrate its effectiveness. Finally, the conclusion and remarks are given to discuss the possible future works.

Suggested Citation

  • Yongjian Li & Xiaoqiang Cai & Lei Xu & Wenxia Yang, 2016. "Heuristic approach on dynamic lot-sizing model for durable products with end-of-use constraints," Annals of Operations Research, Springer, vol. 242(2), pages 265-283, July.
  • Handle: RePEc:spr:annopr:v:242:y:2016:i:2:d:10.1007_s10479-013-1526-x
    DOI: 10.1007/s10479-013-1526-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-013-1526-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-013-1526-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Almeder, Christian, 2010. "A hybrid optimization approach for multi-level capacitated lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 200(2), pages 599-606, January.
    2. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    3. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    4. Arthur F. Veinott, 1969. "Minimum Concave-Cost Solution of Leontief Substitution Models of Multi-Facility Inventory Systems," Operations Research, INFORMS, vol. 17(2), pages 262-291, April.
    5. Kiesmuller, Gudrun P. & van der Laan, Erwin A., 2001. "An inventory model with dependent product demands and returns," International Journal of Production Economics, Elsevier, vol. 72(1), pages 73-87, June.
    6. Alan S. Manne, 1958. "Programming of Economic Lot Sizes," Management Science, INFORMS, vol. 4(2), pages 115-135, January.
    7. Suresh Chand & Suresh Sethi, 2014. "Multi-Period Lot-Sizing with Stationary Demand: Extension to Forecast Horizons," International Series in Operations Research & Management Science, in: Tsan-Ming Choi (ed.), Handbook of EOQ Inventory Problems, edition 127, pages 23-42, Springer.
    8. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    9. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    10. Stephen C. Graves, 1982. "Using Lagrangean Techniques to Solve Hierarchical Production Planning Problems," Management Science, INFORMS, vol. 28(3), pages 260-275, March.
    11. Li, Yongjian & Chen, Jian & Cai, Xiaoqiang, 2007. "Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing," International Journal of Production Economics, Elsevier, vol. 105(2), pages 301-317, February.
    12. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    13. B Karimi & S M T Fatemi Ghomi & J M Wilson, 2006. "A tabu search heuristic for solving the CLSP with backlogging and set-up carry-over," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 140-147, February.
    14. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    15. George Liberopoulos & Dimitrios Pandelis & Olympia Hatzikonstantinou, 2013. "The stochastic economic lot sizing problem for non-stop multi-grade production with sequence-restricted setup changeovers," Annals of Operations Research, Springer, vol. 209(1), pages 179-205, October.
    16. Zhili Zhou & Yongpei Guan, 2013. "Two-stage stochastic lot-sizing problem under cost uncertainty," Annals of Operations Research, Springer, vol. 209(1), pages 207-230, October.
    17. Lu, Liang & Qi, Xiangtong, 2011. "Dynamic lot sizing for multiple products with a new joint replenishment model," European Journal of Operational Research, Elsevier, vol. 212(1), pages 74-80, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohaninejad, Mohammad & Hanzálek, Zdeněk, 2023. "Multi-level lot-sizing and job shop scheduling with lot-streaming: Reformulation and solution approaches," International Journal of Production Economics, Elsevier, vol. 263(C).
    2. Kannan Govindan, 2016. "Evolutionary algorithms for supply chain management," Annals of Operations Research, Springer, vol. 242(2), pages 195-206, July.
    3. Zhou, Shenghan & Zhou, Yuliang & Zuo, Xiaorong & Xiao, Yiyong & Cheng, Yang, 2018. "Modeling and solving the constrained multi-items lot-sizing problem with time-varying setup cost," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 202-207.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    3. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    4. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    5. Yilmaz, Dogacan & Büyüktahtakın, İ. Esra, 2024. "An expandable machine learning-optimization framework to sequential decision-making," European Journal of Operational Research, Elsevier, vol. 314(1), pages 280-296.
    6. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    7. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    8. Chen, Haoxun, 2015. "Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems," Omega, Elsevier, vol. 56(C), pages 25-36.
    9. Sazvar, Z. & Mirzapour Al-e-hashem, S.M.J. & Govindan, K. & Bahli, B., 2016. "A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 232-261.
    10. Xu, Haoxuan & Gong, Yeming (Yale) & Chu, Chengbin & Zhang, Jinlong, 2017. "Dynamic lot-sizing models for retailers with online channels," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 171-184.
    11. Marcos Mansano Furlan & Maristela Oliveira Santos, 2017. "BFO: a hybrid bees algorithm for the multi-level capacitated lot-sizing problem," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 929-944, April.
    12. Vernon Ning Hsu, 2002. "Dynamic Capacity Expansion Problem with Deferred Expansion and Age-Dependent Shortage Cost," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 44-54, June.
    13. Sahling, Florian & Buschkühl, Lisbeth & Tempelmeier, Horst & Helber, Stefan, 2008. "Solving a Multi-Level Capacitated Lot Sizing Problem with Multi-Period Setup Carry-Over via a Fix-and-Optimize Heuristic," Hannover Economic Papers (HEP) dp-400, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Folarin B. Oyebolu & Jeroen Lidth de Jeude & Cyrus Siganporia & Suzanne S. Farid & Richard Allmendinger & Juergen Branke, 2017. "A new lot sizing and scheduling heuristic for multi-site biopharmaceutical production," Journal of Heuristics, Springer, vol. 23(4), pages 231-256, August.
    15. Mohammad Ebrahim Arbabian & Shi Chen & Kamran Moinzadeh, 2021. "Capacity Expansions with Bundled Supplies of Attributes: An Application to Server Procurement in Cloud Computing," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 191-209, 1-2.
    16. Li, Yongjian & Chen, Jian & Cai, Xiaoqiang, 2007. "Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing," International Journal of Production Economics, Elsevier, vol. 105(2), pages 301-317, February.
    17. Zeger Degraeve & Raf Jans, 2007. "A New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times," Operations Research, INFORMS, vol. 55(5), pages 909-920, October.
    18. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    19. Yasemin Merzifonluoğlu & Joseph Geunes & H.E. Romeijn, 2007. "Integrated capacity, demand, and production planning with subcontracting and overtime options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 433-447, June.
    20. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:242:y:2016:i:2:d:10.1007_s10479-013-1526-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.