IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i5p909-920.html
   My bibliography  Save this article

A New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times

Author

Listed:
  • Zeger Degraeve

    (London Business School, Regent's Park, London NW1 4SA, United Kingdom)

  • Raf Jans

    (RSM Erasmus University, 3000 DR Rotterdam, The Netherlands)

Abstract

Although the textbook Dantzig-Wolfe decomposition reformulation for the capacitated lot-sizing problem, as already proposed by Manne [Manne, A. S. 1958. Programming of economic lot sizes. Management Sci. 4 (2) 115--135], provides a strong lower bound, it also has an important structural deficiency. Imposing integrality constraints on the columns in the master program will not necessarily give the optimal integer programming solution. Manne's model contains only production plans that satisfy the Wagner-Whitin property, and it is well known that the optimal solution to a capacitated lot-sizing problem will not necessarily satisfy this property. The first contribution of this paper answers the following question, unsolved for almost 50 years: If Manne's formulation is not equivalent to the original problem, what is then a correct reformulation? We develop an equivalent mixed-integer programming (MIP) formulation to the original problem and show how this results from applying the Dantzig-Wolfe decomposition to the original MIP formulation. The set of extreme points of the lot-size polytope that are needed for this MIP Dantzig-Wolfe reformulation is much larger than the set of dominant plans used by Manne. We further show how the integrality restrictions on the original setup variables translate into integrality restrictions on the new master variables by separating the setup and production decisions. Our new formulation gives the same lower bound as Manne's reformulation. Second, we develop a branch-and-price algorithm for the problem. Computational experiments are presented on data sets available from the literature. Column generation is accelerated by a combination of simplex and subgradient optimization for finding the dual prices. The results show that branch-and-price is computationally tractable and competitive with other state-of-the-art approaches found in the literature.

Suggested Citation

  • Zeger Degraeve & Raf Jans, 2007. "A New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times," Operations Research, INFORMS, vol. 55(5), pages 909-920, October.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:5:p:909-920
    DOI: 10.1287/opre.1070.0404
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0404
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gary D. Eppen & R. Kipp Martin, 1987. "Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 832-848, December.
    2. Alan S. Manne, 1958. "Programming of Economic Lot Sizes," Management Science, INFORMS, vol. 4(2), pages 115-135, January.
    3. Huisman, D. & Jans, R.F. & Peeters, M. & Wagelmans, A.P.M., 2003. "Combining Column Generation and Lagrangian Relaxation," ERIM Report Series Research in Management ERS-2003-092-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. François Vanderbeck, 2000. "On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm," Operations Research, INFORMS, vol. 48(1), pages 111-128, February.
    5. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(4), pages 691-705, August.
    6. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(1), pages 225-228, February.
    7. BELVAUX, Gaetan & WOLSEY, Laurence A., 2001. "Modelling practical lot-sizing problems as mixed-integer programs," LIDAM Reprints CORE 1516, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    9. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    10. BELVAUX, Gaëtan & WOLSEY, Laurence A., 2000. "bc-prod: A specialized branch-and-cut system for lot-sizing problems," LIDAM Reprints CORE 1455, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Cattrysse, Dirk & Maes, Johan & Van Wassenhove, Luk N., 1990. "Set partitioning and column generation heuristics for capacitated dynamic lotsizing," European Journal of Operational Research, Elsevier, vol. 46(1), pages 38-47, May.
    12. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    13. Miller, Andrew J. & Nemhauser, George L. & Savelsbergh, Martin W. P., 2000. "On the capacitated lot-sizing and continuous 0-1 knapsack polyhedra," European Journal of Operational Research, Elsevier, vol. 125(2), pages 298-315, September.
    14. P. R. Kleindorfer & E. F. P. Newson, 1975. "A Lower Bounding Structure for Lot-Size Scheduling Problems," Operations Research, INFORMS, vol. 23(2), pages 299-311, April.
    15. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(5), pages 879-883, October.
    16. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1195-1198, December.
    17. Gaetan Belvaux & Laurence A. Wolsey, 2001. "Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs," Management Science, INFORMS, vol. 47(7), pages 993-1007, July.
    18. R. Kipp Martin, 1987. "Generating Alternative Mixed-Integer Programming Models Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 820-831, December.
    19. Gaetan Belvaux & Laurence A. Wolsey, 2000. "bc --- prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems," Management Science, INFORMS, vol. 46(5), pages 724-738, May.
    20. BARANY, Imre & VAN ROY, Tony J. & WOLSEY, Laurence A., 1984. "Strong formulations for multi-item capacitated lot sizing," LIDAM Reprints CORE 590, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Zeger Degraeve & Marc Peeters, 2003. "Optimal Integer Solutions to Industrial Cutting-Stock Problems: Part 2, Benchmark Results," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 58-81, February.
    22. Bernard P. Dzielinski & Ralph E. Gomory, 1965. "Optimal Programming of Lot Sizes, Inventory and Labor Allocations," Management Science, INFORMS, vol. 11(9), pages 874-890, July.
    23. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    24. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(2), pages 411-413, April.
    25. François Vanderbeck, 1998. "Lot-Sizing with Start-Up Times," Management Science, INFORMS, vol. 44(10), pages 1409-1425, October.
    26. Mohan Gopalakrishnan & Ke Ding & Jean-Marie Bourjolly & Srimathy Mohan, 2001. "A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover," Management Science, INFORMS, vol. 47(6), pages 851-863, June.
    27. Imre Barany & Tony J. Van Roy & Laurence A. Wolsey, 1984. "Strong Formulations for Multi-Item Capacitated Lot Sizing," Management Science, INFORMS, vol. 30(10), pages 1255-1261, October.
    28. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    29. Gabriel R. Bitran & Hirofumi Matsuo, 1986. "The Multi-Item Capacitated Lot Size Problem: Error Bounds of Manne's Formulations," Management Science, INFORMS, vol. 32(3), pages 350-359, March.
    30. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    3. Ioannis Fragkos & Zeger Degraeve & Bert De Reyck, 2016. "A Horizon Decomposition Approach for the Capacitated Lot-Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 465-482, August.
    4. Silvio Alexandre de Araujo & Bert De Reyck & Zeger Degraeve & Ioannis Fragkos & Raf Jans, 2015. "Period Decompositions for the Capacitated Lot Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 431-448, August.
    5. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    6. Tao Wu & Zhe Liang & Canrong Zhang, 2018. "Analytics Branching and Selection for the Capacitated Multi-Item Lot Sizing Problem with Nonidentical Machines," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 236-258, May.
    7. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    8. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    9. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    10. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.
    11. AkartunalI, Kerem & Miller, Andrew J., 2009. "A heuristic approach for big bucket multi-level production planning problems," European Journal of Operational Research, Elsevier, vol. 193(2), pages 396-411, March.
    12. Marc Peeters & Zeger Degraeve, 2004. "The Co-Printing Problem: A Packing Problem with a Color Constraint," Operations Research, INFORMS, vol. 52(4), pages 623-638, August.
    13. Andrea Raiconi & Julia Pahl & Monica Gentili & Stefan Voß & Raffaele Cerulli, 2017. "Tactical Production and Lot Size Planning with Lifetime Constraints: A Comparison of Model Formulations," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-24, October.
    14. Huisman, D. & Jans, R.F. & Peeters, M. & Wagelmans, A.P.M., 2003. "Combining Column Generation and Lagrangian Relaxation," ERIM Report Series Research in Management ERS-2003-092-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    16. Raf Jans, 2009. "Solving Lot-Sizing Problems on Parallel Identical Machines Using Symmetry-Breaking Constraints," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 123-136, February.
    17. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    18. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    19. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    20. Krzysztof C. Kiwiel, 2010. "An Inexact Bundle Approach to Cutting-Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 131-143, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:5:p:909-920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.