IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i4d10.1007_s10845-014-1030-4.html
   My bibliography  Save this article

BFO: a hybrid bees algorithm for the multi-level capacitated lot-sizing problem

Author

Listed:
  • Marcos Mansano Furlan

    (Universidade de São Paulo)

  • Maristela Oliveira Santos

    (Universidade de São Paulo)

Abstract

This paper presents a hybrid heuristic based on the bees algorithm combined with the fix-and-optimize heuristic to solve the multi-level capacitated lot-sizing problem. The bees algorithm can be used as a new method to determine the sequence in which to apply the partition in the fix-and-optimize approach. This new manner of choosing the partition adds diversity to the solution pool and yields different local optima solutions after some iterations. The bees-and-fix-and-optimize (BFO) algorithm attempts to avoid these local optima by performing random search in accordance with the concept of bees algorithm. The BFO has yielded good results for instances from the literature and, in most cases, the results are superior to the best results provided by approaches presented in recent literature. They show that this construction concept is advantageous and illustrate the efficiency of hybrid methods composed of matheuristics and metaheuristics. Furthermore, the BFO approach is a general-purpose heuristic that can be applied to solve other types of production planning problems.

Suggested Citation

  • Marcos Mansano Furlan & Maristela Oliveira Santos, 2017. "BFO: a hybrid bees algorithm for the multi-level capacitated lot-sizing problem," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 929-944, April.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:4:d:10.1007_s10845-014-1030-4
    DOI: 10.1007/s10845-014-1030-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-1030-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-1030-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Almeder, Christian, 2010. "A hybrid optimization approach for multi-level capacitated lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 200(2), pages 599-606, January.
    2. Peter J. Billington & John O. McClain & L. Joseph Thomas, 1983. "Mathematical Programming Approaches to Capacity-Constrained MRP Systems: Review, Formulation and Problem Reduction," Management Science, INFORMS, vol. 29(10), pages 1126-1141, October.
    3. Tao Wu & Leyuan Shi & Jie Song, 2012. "An MIP-based interval heuristic for the capacitated multi-level lot-sizing problem with setup times," Annals of Operations Research, Springer, vol. 196(1), pages 635-650, July.
    4. Maes, Johan & McClain, John O. & Van Wassenhove, Luk N., 1991. "Multilevel capacitated lotsizing complexity and LP-based heuristics," European Journal of Operational Research, Elsevier, vol. 53(2), pages 131-148, July.
    5. Horst Tempelmeier & Matthias Derstroff, 1996. "A Lagrangean-Based Heuristic for Dynamic Multilevel Multiitem Constrained Lotsizing with Setup Times," Management Science, INFORMS, vol. 42(5), pages 738-757, May.
    6. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    7. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    8. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    9. Stadtler, Hartmut, 2003. "Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 20204, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Hartmut Stadtler, 2003. "Multilevel Lot Sizing with Setup Times and Multiple Constrained Resources: Internally Rolling Schedules with Lot-Sizing Windows," Operations Research, INFORMS, vol. 51(3), pages 487-502, June.
    11. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    12. AkartunalI, Kerem & Miller, Andrew J., 2009. "A heuristic approach for big bucket multi-level production planning problems," European Journal of Operational Research, Elsevier, vol. 193(2), pages 396-411, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Wang & Jizhuang Hui & Bin Zhu & Ying Liu, 2022. "Adaptive Genetic Algorithm Based on Fuzzy Reasoning for the Multilevel Capacitated Lot-Sizing Problem with Energy Consumption in Synchronizer Production," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    2. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.
    3. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    4. Yiyong Xiao & Meng You & Xiaorong Zuo & Shenghan Zhou & Xing Pan, 2018. "The Uncapacitatied Dynamic Single-Level Lot-Sizing Problem under a Time-Varying Environment and an Exact Solution Approach," Sustainability, MDPI, vol. 10(11), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Quadt & Heinrich Kuhn, 2009. "Capacitated lot‐sizing and scheduling with parallel machines, back‐orders, and setup carry‐over," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 366-384, June.
    2. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    3. Chen, Haoxun, 2015. "Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems," Omega, Elsevier, vol. 56(C), pages 25-36.
    4. Tao Wu, 2022. "Predictive Search for Capacitated Multi-Item Lot Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 385-406, January.
    5. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
    6. Almeder, Christian, 2010. "A hybrid optimization approach for multi-level capacitated lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 200(2), pages 599-606, January.
    7. Almeder, Christian & Klabjan, Diego & Traxler, Renate & Almada-Lobo, Bernardo, 2015. "Lead time considerations for the multi-level capacitated lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 727-738.
    8. Dziuba, Daryna & Almeder, Christian, 2023. "New construction heuristic for capacitated lot sizing problems," European Journal of Operational Research, Elsevier, vol. 311(3), pages 906-920.
    9. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    10. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    11. Sahling, Florian & Buschkühl, Lisbeth & Tempelmeier, Horst & Helber, Stefan, 2008. "Solving a Multi-Level Capacitated Lot Sizing Problem with Multi-Period Setup Carry-Over via a Fix-and-Optimize Heuristic," Hannover Economic Papers (HEP) dp-400, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    12. Absi, Nabil & van den Heuvel, Wilco, 2019. "Worst case analysis of Relax and Fix heuristics for lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 279(2), pages 449-458.
    13. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    14. Tao Wu & Leyuan Shi & Joseph Geunes & Kerem Akartunalı, 2012. "On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times," Journal of Global Optimization, Springer, vol. 53(4), pages 615-639, August.
    15. Lang, Jan Christian & Shen, Zuo-Jun Max, 2011. "Fix-and-optimize heuristics for capacitated lot-sizing with sequence-dependent setups and substitutions," European Journal of Operational Research, Elsevier, vol. 214(3), pages 595-605, November.
    16. Hartmut Stadtler & Malte Meistering, 2019. "Model formulations for the capacitated lot-sizing problem with service-level constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1025-1056, December.
    17. Wu, Tao & Shi, Leyuan & Geunes, Joseph & AkartunalI, Kerem, 2011. "An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging," European Journal of Operational Research, Elsevier, vol. 214(2), pages 428-441, October.
    18. Tao Wu & Leyuan Shi & Jie Song, 2012. "An MIP-based interval heuristic for the capacitated multi-level lot-sizing problem with setup times," Annals of Operations Research, Springer, vol. 196(1), pages 635-650, July.
    19. Gislaine Mara Melega & Silvio Alexandre de Araujo & Reinaldo Morabito, 2020. "Mathematical model and solution approaches for integrated lot-sizing, scheduling and cutting stock problems," Annals of Operations Research, Springer, vol. 295(2), pages 695-736, December.
    20. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:4:d:10.1007_s10845-014-1030-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.