IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v145y2013i1p53-66.html
   My bibliography  Save this article

Dynamic lot sizing for a warm/cold process: Heuristics and insights

Author

Listed:
  • Toy, Ayhan Özgür
  • Berk, Emre

Abstract

We consider the dynamic lot sizing problem for a warm/cold process where the process can be kept warm at a unit variable cost for the next period if more than a prespecified quantity has been produced. Exploiting the optimal production plan structures, we develop nine rule-based forward solution heuristics. Proposed heuristics are modified counterparts of the heuristics developed previously for the classical dynamic lot sizing problem. In a numerical study, we investigate the performance of the proposed heuristics and identify operating environment characteristics where each particular heuristic is the best or among the best. Moreover, for a warm/cold process setting, our numerical studies indicate that, when used on a rolling horizon basis, a heuristic may also perform better costwise than a solution obtained using a dynamic programming approach.

Suggested Citation

  • Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
  • Handle: RePEc:eee:proeco:v:145:y:2013:i:1:p:53-66
    DOI: 10.1016/j.ijpe.2012.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312004021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stadtler, Hartmut, 2000. "Improved rolling schedules for the dynamic single level lot sizing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 14079, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Alan S. Manne, 1958. "Programming of Economic Lot Sizes," Management Science, INFORMS, vol. 4(2), pages 115-135, January.
    3. POCHET, Yves & WOLSEY, Laurence A., 2010. "Single item lot-sizing with non-decreasing capacities," LIDAM Reprints CORE 2145, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Narayanan, Arunachalam & Robinson, Powell, 2010. "Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems," International Journal of Production Economics, Elsevier, vol. 127(1), pages 85-94, September.
    5. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    6. Ng, C.T. & Kovalyov, Mikhail Y. & Cheng, T.C.E., 2010. "A simple FPTAS for a single-item capacitated economic lot-sizing problem with a monotone cost structure," European Journal of Operational Research, Elsevier, vol. 200(2), pages 621-624, January.
    7. Hartmut Stadtler, 2000. "Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem," Management Science, INFORMS, vol. 46(2), pages 318-326, February.
    8. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    9. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    10. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    11. Chubanov, Sergei & Kovalyov, Mikhail Y. & Pesch, Erwin, 2008. "A single-item economic lot-sizing problem with a non-uniform resource: Approximation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 877-889, September.
    12. Sahin, Funda & Powell Robinson, E. & Gao, Li-Lian, 2008. "Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 528-541, October.
    13. Berk, Emre & Toy, Ayhan Ozgur & Hazir, Oncu, 2008. "Single item lot-sizing problem for a warm/cold process with immediate lost sales," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1251-1267, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Sampaio, Raimundo J.B. & Wollmann, Rafael R.G. & Vieira, Paula F.G., 2017. "A flexible production planning for rolling-horizons," International Journal of Production Economics, Elsevier, vol. 190(C), pages 31-36.
    2. Yongjian Li & Xiaoqiang Cai & Lei Xu & Wenxia Yang, 2016. "Heuristic approach on dynamic lot-sizing model for durable products with end-of-use constraints," Annals of Operations Research, Springer, vol. 242(2), pages 265-283, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    2. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    3. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    4. Okhrin, Irena & Richter, Knut, 2011. "The linear dynamic lot size problem with minimum order quantity," International Journal of Production Economics, Elsevier, vol. 133(2), pages 688-693, October.
    5. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. José M. Gutiérrez & Beatriz Abdul-Jalbar & Joaquín Sicilia & Inmaculada Rodríguez-Martín, 2021. "Effective Algorithms for the Economic Lot-Sizing Problem with Bounded Inventory and Linear Fixed-Charge Cost Structure," Mathematics, MDPI, vol. 9(6), pages 1-21, March.
    7. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    8. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    9. Wilco van den Heuvel & Albert P.M. Wagelmans, 2002. "A Note on Ending Inventory Valuation in Multiperiod Production Scheduling," Tinbergen Institute Discussion Papers 02-067/4, Tinbergen Institute.
    10. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.
    11. Sahin, Funda & Powell Robinson, E. & Gao, Li-Lian, 2008. "Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 528-541, October.
    12. Jing, Fuying & Chao, Xiangrui, 2021. "A dynamic lot size model with perishable inventory and stockout," Omega, Elsevier, vol. 103(C).
    13. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    14. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    15. Narayanan, Arunachalam & Robinson, Powell, 2010. "Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems," International Journal of Production Economics, Elsevier, vol. 127(1), pages 85-94, September.
    16. G. Rius-Sorolla & J. Maheut & S. Estellés-Miguel & J. P. García-Sabater, 2021. "Operations planning test bed under rolling horizons, multiproduct, multiechelon, multiprocess for capacitated production planning modelling with strokes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1289-1315, December.
    17. Azaron, Amir & Tang, Ou & Tavakkoli-Moghaddam, Reza, 2009. "Dynamic lot sizing problem with continuous-time Markovian production cost," International Journal of Production Economics, Elsevier, vol. 120(2), pages 607-612, August.
    18. Fink, Jiří & Hurink, Johann L., 2015. "Minimizing costs is easier than minimizing peaks when supplying the heat demand of a group of houses," European Journal of Operational Research, Elsevier, vol. 242(2), pages 644-650.
    19. Nguyen, Christine & Dessouky, Maged & Toriello, Alejandro, 2014. "Consolidation strategies for the delivery of perishable products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 108-121.
    20. repec:dau:papers:123456789/2078 is not listed on IDEAS
    21. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:145:y:2013:i:1:p:53-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.