IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v285y2020i1d10.1007_s10479-019-03346-4.html
   My bibliography  Save this article

A new approximation algorithm for unrelated parallel machine scheduling with release dates

Author

Listed:
  • Zhi Pei

    (Zhejiang University of Technology)

  • Mingzhong Wan

    (Zhejiang University of Technology
    Northern Illinois University)

  • Ziteng Wang

    (Northern Illinois University)

Abstract

In the current study, an unrelated parallel machine scheduling problem with release dates is considered, which is to obtain a job assignment with minimal sum of weighted completion times. Although this problem is NP-hard in the strong sense, which renders the optimality seeking a formidable task within polynomial time, a 4-approximation algorithm based on the constant worst-case bound is devised and proved in comparison with the existing 16/3-approximation (Hall et al. in Math Oper Res 22(3):513–544, 1997). In the newly proposed algorithm, the original scheduling problem is divided into several sub-problems based on release dates. For each sub-problem, a convex quadratic integer programming model is constructed in accordance with the specific problem structure. Then a semi-definite programming approach is implemented to produce a lower bound via the semi-definite relaxation of each sub-problem. Furthermore, by considering the binary constraint, a branch and bound based method and a local search strategy are applied separately to locate the optimal solution of each sub-problem. Then the solution of the original scheduling problem is derived by integrating the outcomes of the sub-problems via the proposed approximation algorithm. In the numerical analysis, it is discovered that the proposed methods could always obtain a scheduling result within $$1\%$$1% of the optimal solution. And an asymptotic trend could be observed where the quality of solutions improves even further as the scale of the scheduling problem increases.

Suggested Citation

  • Zhi Pei & Mingzhong Wan & Ziteng Wang, 2020. "A new approximation algorithm for unrelated parallel machine scheduling with release dates," Annals of Operations Research, Springer, vol. 285(1), pages 397-425, February.
  • Handle: RePEc:spr:annopr:v:285:y:2020:i:1:d:10.1007_s10479-019-03346-4
    DOI: 10.1007/s10479-019-03346-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03346-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03346-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Yuan & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2019. "A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 273(1), pages 74-81.
    2. F. Rodriguez & C. Blum & C. García-Martínez & M. Lozano, 2012. "GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times," Annals of Operations Research, Springer, vol. 201(1), pages 383-401, December.
    3. Azizoglu, Meral & Kirca, Omer, 1999. "On the minimization of total weighted flow time with identical and uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 113(1), pages 91-100, February.
    4. Martin Skutella & Maxim Sviridenko & Marc Uetz, 2016. "Unrelated Machine Scheduling with Stochastic Processing Times," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 851-864, August.
    5. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    6. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    7. J. M. van den Akker & J. A. Hoogeveen & S. L. van de Velde, 1999. "Parallel Machine Scheduling by Column Generation," Operations Research, INFORMS, vol. 47(6), pages 862-872, December.
    8. Marcin Siepak & Jerzy Józefczyk, 2014. "Solution algorithms for unrelated machines minmax regret scheduling problem with interval processing times and the total flow time criterion," Annals of Operations Research, Springer, vol. 222(1), pages 517-533, November.
    9. Tjark Vredeveld & Cor Hurkens, 2002. "Experimental Comparison of Approximation Algorithms for Scheduling Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 175-189, May.
    10. Lixin Tang & Yanyan Zhang, 2011. "A new Lagrangian Relaxation Algorithm for scheduling dissimilar parallel machines with release dates," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(7), pages 1133-1141.
    11. Lancia, Giuseppe, 2000. "Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 120(2), pages 277-288, January.
    12. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    13. Kerem Bülbül & Halil Şen, 2017. "An exact extended formulation for the unrelated parallel machine total weighted completion time problem," Journal of Scheduling, Springer, vol. 20(4), pages 373-389, August.
    14. Leslie A. Hall & Andreas S. Schulz & David B. Shmoys & Joel Wein, 1997. "Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 513-544, August.
    15. R. Nessah & Farouk Yalaoui & C. Chu, 2008. "A branch and bound algorithm to minimize total weighted completion time on identical parallel machines with job release date," Post-Print hal-00580602, HAL.
    16. E. Mokotoff & J.L. Jimeno, 2002. "Heuristics Based on Partial Enumeration for the Unrelated Parallel Processor Scheduling Problem," Annals of Operations Research, Springer, vol. 117(1), pages 133-150, November.
    17. Richard Daniels & Barbara Hoopes & Joseph Mazzola, 1997. "An analysis of heuristics for the parallel-machine flexible-resource scheduling problem," Annals of Operations Research, Springer, vol. 70(0), pages 439-472, April.
    18. F. Rendl, 2016. "Semidefinite relaxations for partitioning, assignment and ordering problems," Annals of Operations Research, Springer, vol. 240(1), pages 119-140, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Ho Su & Jen-Ya Wang, 2022. "A Branch-and-Bound Algorithm for Minimizing the Total Tardiness of Multiple Developers," Mathematics, MDPI, vol. 10(7), pages 1-24, April.
    2. Mecler, Davi & Abu-Marrul, Victor & Martinelli, Rafael & Hoff, Arild, 2022. "Iterated greedy algorithms for a complex parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 545-560.
    3. An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).
    4. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Chen, Jie, 2022. "A column generation-based exact solution method for seru scheduling problems," Omega, Elsevier, vol. 108(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    2. Kerem Bülbül & Halil Şen, 2017. "An exact extended formulation for the unrelated parallel machine total weighted completion time problem," Journal of Scheduling, Springer, vol. 20(4), pages 373-389, August.
    3. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    4. Chen, Jianfu & Chu, Chengbin & Sahli, Abderrahim & Li, Kai, 2024. "A branch-and-price algorithm for unrelated parallel machine scheduling with machine usage costs," European Journal of Operational Research, Elsevier, vol. 316(3), pages 856-872.
    5. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    6. Daniel Kowalczyk & Roel Leus, 2018. "A Branch-and-Price Algorithm for Parallel Machine Scheduling Using ZDDs and Generic Branching," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 768-782, November.
    7. Teobaldo Bulhões & Ruslan Sadykov & Anand Subramanian & Eduardo Uchoa, 2020. "On the exact solution of a large class of parallel machine scheduling problems," Journal of Scheduling, Springer, vol. 23(4), pages 411-429, August.
    8. Plateau, M.-C. & Rios-Solis, Y.A., 2010. "Optimal solutions for unrelated parallel machines scheduling problems using convex quadratic reformulations," European Journal of Operational Research, Elsevier, vol. 201(3), pages 729-736, March.
    9. Rabia Nessah & Chengbin Chu, 2010. "Infinite split scheduling: a new lower bound of total weighted completion time on parallel machines with job release dates and unavailability periods," Annals of Operations Research, Springer, vol. 181(1), pages 359-375, December.
    10. F. Rodriguez & C. Blum & C. García-Martínez & M. Lozano, 2012. "GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times," Annals of Operations Research, Springer, vol. 201(1), pages 383-401, December.
    11. Xiaoyan Zhang & Ran Ma & Jian Sun & Zan-Bo Zhang, 0. "Randomized selection algorithm for online stochastic unrelated machines scheduling," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-16.
    12. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    13. Xiangtong Qi, 2005. "A logistics scheduling model: Inventory cost reduction by batching," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 312-320, June.
    14. Kramer, Arthur & Iori, Manuel & Lacomme, Philippe, 2021. "Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization," European Journal of Operational Research, Elsevier, vol. 289(3), pages 825-840.
    15. Xiaoyan Zhang & Ran Ma & Jian Sun & Zan-Bo Zhang, 2022. "Randomized selection algorithm for online stochastic unrelated machines scheduling," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1796-1811, October.
    16. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
    17. Halil Şen & Kerem Bülbül, 2015. "A Strong Preemptive Relaxation for Weighted Tardiness and Earliness/Tardiness Problems on Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 135-150, February.
    18. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    19. Adam Kasperski & Paweł Zieliński, 2019. "Risk-averse single machine scheduling: complexity and approximation," Journal of Scheduling, Springer, vol. 22(5), pages 567-580, October.
    20. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:285:y:2020:i:1:d:10.1007_s10479-019-03346-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.