IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v69y2018i3d10.1007_s10589-017-9967-9.html
   My bibliography  Save this article

A two-level graph partitioning problem arising in mobile wireless communications

Author

Listed:
  • Jamie Fairbrother

    (Lancaster University)

  • Adam N. Letchford

    (Lancaster University)

  • Keith Briggs

    (BT Technology, Service & Operations)

Abstract

In the k -partition problem (k-PP), one is given an edge-weighted undirected graph, and one must partition the node set into at most k subsets, in order to minimise (or maximise) the total weight of the edges that have their end-nodes in the same subset. Various hierarchical variants of this problem have been studied in the context of data mining. We consider a ‘two-level’ variant that arises in mobile wireless communications. We show that an exact algorithm based on intelligent preprocessing, cutting planes and symmetry-breaking is capable of solving small- and medium-size instances to proven optimality, and providing strong lower bounds for larger instances.

Suggested Citation

  • Jamie Fairbrother & Adam N. Letchford & Keith Briggs, 2018. "A two-level graph partitioning problem arising in mobile wireless communications," Computational Optimization and Applications, Springer, vol. 69(3), pages 653-676, April.
  • Handle: RePEc:spr:coopap:v:69:y:2018:i:3:d:10.1007_s10589-017-9967-9
    DOI: 10.1007/s10589-017-9967-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9967-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9967-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Deza & M. Grötschel & M. Laurent, 1992. "Clique-Web Facets for Multicut Polytopes," Mathematics of Operations Research, INFORMS, vol. 17(4), pages 981-1000, November.
    2. Bissan Ghaddar & Miguel Anjos & Frauke Liers, 2011. "A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem," Annals of Operations Research, Springer, vol. 188(1), pages 155-174, August.
    3. Adam N. Letchford, 2001. "On Disjunctive Cuts for Combinatorial Optimization," Journal of Combinatorial Optimization, Springer, vol. 5(3), pages 299-315, September.
    4. Karen Aardal & Stan Hoesel & Arie Koster & Carlo Mannino & Antonio Sassano, 2007. "Models and solution techniques for frequency assignment problems," Annals of Operations Research, Springer, vol. 153(1), pages 79-129, September.
    5. Renata Sotirov, 2014. "An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 16-30, February.
    6. R. C. Carlson & G. L. Nemhauser, 1966. "Scheduling to Minimize Interaction Cost," Operations Research, INFORMS, vol. 14(1), pages 52-58, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Lu & Zhibin Deng & Shu-Cherng Fang & Wenxun Xing, 2023. "A New Global Algorithm for Max-Cut Problem with Chordal Sparsity," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 608-638, May.
    2. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2019. "Improving the linear relaxation of maximum k-cut with semidefinite-based constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 123-151, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2018. "Computational study of valid inequalities for the maximum k-cut problem," Annals of Operations Research, Springer, vol. 265(1), pages 5-27, June.
    2. Diego Recalde & Ramiro Torres & Polo Vaca, 2020. "An exact approach for the multi-constraint graph partitioning problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 289-308, October.
    3. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    4. Fuda Ma & Jin-Kao Hao, 2017. "A multiple search operator heuristic for the max-k-cut problem," Annals of Operations Research, Springer, vol. 248(1), pages 365-403, January.
    5. Natalia Castro & María A. Garrido-Vizuete & Rafael Robles & María Trinidad Villar-Liñán, 2020. "Contrast in greyscales of graphs," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 874-898, April.
    6. Dupont, Audrey & Linhares, Andréa Carneiro & Artigues, Christian & Feillet, Dominique & Michelon, Philippe & Vasquez, Michel, 2009. "The dynamic frequency assignment problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 75-88, May.
    7. Renata Sotirov, 2018. "Graph bisection revisited," Annals of Operations Research, Springer, vol. 265(1), pages 143-154, June.
    8. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    9. Giovanni Giallombardo & Houyuan Jiang & Giovanna Miglionico, 2016. "New Formulations for the Conflict Resolution Problem in the Scheduling of Television Commercials," Operations Research, INFORMS, vol. 64(4), pages 838-848, August.
    10. Angelika Wiegele & Shudian Zhao, 2022. "SDP-based bounds for graph partition via extended ADMM," Computational Optimization and Applications, Springer, vol. 82(1), pages 251-291, May.
    11. Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
    12. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    13. Aardal, K. & van Hoesel, C.P.M., 1995. "Polyhedral techniques in combinatorial optimization," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    14. Bradley Hardy & Rhyd Lewis & Jonathan Thompson, 2018. "Tackling the edge dynamic graph colouring problem with and without future adjacency information," Journal of Heuristics, Springer, vol. 24(3), pages 321-343, June.
    15. Hawa, Asyl L. & Lewis, Rhyd & Thompson, Jonathan M., 2022. "Exact and approximate methods for the score-constrained packing problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 847-859.
    16. Edmund Burke & Jakub Mareček & Andrew Parkes & Hana Rudová, 2010. "A supernodal formulation of vertex colouring with applications in course timetabling," Annals of Operations Research, Springer, vol. 179(1), pages 105-130, September.
    17. Egon Balas, 2005. "Projection, Lifting and Extended Formulation in Integer and Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 125-161, November.
    18. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    19. Carlos-Iván Páez-Rueda & Arturo Fajardo & Manuel Pérez & German Yamhure & Gabriel Perilla, 2023. "The F/DR-D-10 Algorithm: A Novel Heuristic Strategy to Solve the Minimum Span Frequency Assignment Problem Embedded in Mobile Applications," Mathematics, MDPI, vol. 11(20), pages 1-14, October.
    20. Chinneck, John W. & Hafez, Roshdy H.M., 2016. "Fast heuristics for the frequency channel assignment problem in multi-hop wireless networksAuthor-Name: Chaudhry, Aizaz U," European Journal of Operational Research, Elsevier, vol. 251(3), pages 771-782.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:3:d:10.1007_s10589-017-9967-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.