IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v238y2016i1d10.1007_s10479-015-2059-2.html
   My bibliography  Save this article

A queueing model with two classes of retrial customers and paired services

Author

Listed:
  • Ioannis Dimitriou

    (University of Patras)

Abstract

We mathematically investigate a single server system accepting two types of retrial customers and paired service. If upon arrival a customer finds the server busy, it is routed to an infinite capacity orbit queue according to each type. Upon a service completion epoch, if at least one orbit queue is non-empty, the server seeks to find customers from the orbits. If both orbit queues are non-empty, the seeking process will bring to the service area a pair of customers, one from each orbit. If there is only one non-empty, then a single customer from this orbit queue will be brought to the service area. However, if a primary customer arrives during the seeking process it will occupy the server immediately. It is shown that the joint stationary orbit queue length distribution at service completion epochs is determined by solving a Riemann boundary value problem. Stability condition is investigated, while generalizations of the main model are also discussed. A simple numerical example is obtained and yields insight into the behavior of the system.

Suggested Citation

  • Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
  • Handle: RePEc:spr:annopr:v:238:y:2016:i:1:d:10.1007_s10479-015-2059-2
    DOI: 10.1007/s10479-015-2059-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2059-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2059-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langaris, Christos & Dimitriou, Ioannis, 2010. "A queueing system with n-phases of service and (n-1)-types of retrial customers," European Journal of Operational Research, Elsevier, vol. 205(3), pages 638-649, September.
    2. A. Gómez-Corral, 2006. "A bibliographical guide to the analysis of retrial queues through matrix analytic techniques," Annals of Operations Research, Springer, vol. 141(1), pages 163-191, January.
    3. J. Artalejo, 1999. "A classified bibliography of research on retrial queues: Progress in 1990–1999," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 187-211, December.
    4. B. Kumar & A. Vijayakumar & D. Arivudainambi, 2002. "An M/G/1 Retrial Queueing System with Two-Phase Service and Preemptive Resume," Annals of Operations Research, Springer, vol. 113(1), pages 61-79, July.
    5. B. Kumar & J Raja, 2006. "On multiserver feedback retrial queues with balking and control retrial rate," Annals of Operations Research, Springer, vol. 141(1), pages 211-232, January.
    6. Anastasia Winkler, 2013. "Dynamic scheduling of a single-server two-class queue with constant retrial policy," Annals of Operations Research, Springer, vol. 202(1), pages 197-210, January.
    7. I. Atencia & G. Bouza & P. Moreno, 2008. "An M [X] /G/1 retrial queue with server breakdowns and constant rate of repeated attempts," Annals of Operations Research, Springer, vol. 157(1), pages 225-243, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnaud Devos & Joris Walraevens & Dieter Fiems & Herwig Bruneel, 2022. "Approximations for the performance evaluation of a discrete-time two-class queue with an alternating service discipline," Annals of Operations Research, Springer, vol. 310(2), pages 477-503, March.
    2. Sanga, Sudeep Singh & Jain, Madhu, 2019. "FM/FM/1 double orbit retrial queue with customers’ joining strategy: A parametric nonlinear programing approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    2. Efrosinin, Dmitry & Winkler, Anastasia, 2011. "Queueing system with a constant retrial rate, non-reliable server and threshold-based recovery," European Journal of Operational Research, Elsevier, vol. 210(3), pages 594-605, May.
    3. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    4. Kim, Chesoong & Klimenok, Valentina I. & Orlovsky, Dmitry S., 2008. "The BMAP/PH/N retrial queue with Markovian flow of breakdowns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1057-1072, September.
    5. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    6. Langaris, Christos & Dimitriou, Ioannis, 2010. "A queueing system with n-phases of service and (n-1)-types of retrial customers," European Journal of Operational Research, Elsevier, vol. 205(3), pages 638-649, September.
    7. Amita Bhagat & Madhu Jain, 2020. "Retrial queue with multiple repairs, multiple services and non preemptive priority," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 787-814, September.
    8. Anastasia Winkler, 2013. "Dynamic scheduling of a single-server two-class queue with constant retrial policy," Annals of Operations Research, Springer, vol. 202(1), pages 197-210, January.
    9. Shan Gao & Jinting Wang & Tien Van Do, 2016. "A repairable retrial queue under Bernoulli schedule and general retrial policy," Annals of Operations Research, Springer, vol. 247(1), pages 169-192, December.
    10. Sanga, Sudeep Singh & Jain, Madhu, 2019. "Cost optimization and ANFIS computing for admission control of M/M/1/K queue with general retrial times and discouragement," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    11. Chesoong Kim & Valentina Klimenok & Alexander Dudin, 2014. "A G/M/1 retrial queue with constant retrial rate," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 509-529, July.
    12. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    13. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    14. Bin Liu & Jie Min & Yiqiang Q. Zhao, 2023. "Refined tail asymptotic properties for the $$M^X/G/1$$ M X / G / 1 retrial queue," Queueing Systems: Theory and Applications, Springer, vol. 104(1), pages 65-105, June.
    15. Gao, Shan & Wang, Jinting, 2014. "Performance and reliability analysis of an M/G/1-G retrial queue with orbital search and non-persistent customers," European Journal of Operational Research, Elsevier, vol. 236(2), pages 561-572.
    16. Tuan Phung-Duc & Wouter Rogiest & Yutaka Takahashi & Herwig Bruneel, 2016. "Retrial queues with balanced call blending: analysis of single-server and multiserver model," Annals of Operations Research, Springer, vol. 239(2), pages 429-449, April.
    17. B. Krishna Kumar & R. Sankar & R. Navaneetha Krishnan & R. Rukmani, 2022. "Performance Analysis of Multi-processor Two-Stage Tandem Call Center Retrial Queues with Non-Reliable Processors," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 95-142, March.
    18. Wang, Jinting & Liu, Bin & Li, Jianghua, 2008. "Transient analysis of an M/G/1 retrial queue subject to disasters and server failures," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1118-1132, September.
    19. Pedram Sahba & Bariş Balciog̃lu & Dragan Banjevic, 2013. "Analysis of the finite‐source multiclass priority queue with an unreliable server and setup time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 331-342, June.
    20. T. Deepak, 2015. "On a retrial queueing model with single/batch service and search of customers from the orbit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 493-520, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:238:y:2016:i:1:d:10.1007_s10479-015-2059-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.