IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v247y2016i1d10.1007_s10479-015-1885-6.html
   My bibliography  Save this article

A repairable retrial queue under Bernoulli schedule and general retrial policy

Author

Listed:
  • Shan Gao

    (Beijing Jiaotong University
    Fuyang Normal College)

  • Jinting Wang

    (Beijing Jiaotong University)

  • Tien Van Do

    (Budapest University of Technology and Economics)

Abstract

This paper considers a repairable M/G/1 retrial queue with Bernoulli schedule and a general retrial policy, which is motivated by a contention problem in the downlink direction of wireless base stations in cognitive radio networks. Arriving Customers (called primary arrivals) who cannot receive service upon arrival either join the infinite waiting space in front of the server (called as the normal queue) with probability $$q$$ q , or enter the orbit with probability $$1-q$$ 1 - q according to the FCFS discipline. If the server breaks down in the process of the service of a customer, the customer in service either joins the orbit queue or leaves the system forever. First, we study the ergodicity of two related embedded Markov chains and derive stationary distributions. Second, we find the steady-state joint generating function of the number of customers in both queues. Some important performance measures of the system are obtained. Third, the reliability analysis of the system is also given. Finally, numerical examples are given to illustrate the impact of system parameters on the system performance measures.

Suggested Citation

  • Shan Gao & Jinting Wang & Tien Van Do, 2016. "A repairable retrial queue under Bernoulli schedule and general retrial policy," Annals of Operations Research, Springer, vol. 247(1), pages 169-192, December.
  • Handle: RePEc:spr:annopr:v:247:y:2016:i:1:d:10.1007_s10479-015-1885-6
    DOI: 10.1007/s10479-015-1885-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1885-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1885-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Shan & Wang, Jinting, 2014. "Performance and reliability analysis of an M/G/1-G retrial queue with orbital search and non-persistent customers," European Journal of Operational Research, Elsevier, vol. 236(2), pages 561-572.
    2. B. Kumar & A. Vijayakumar & D. Arivudainambi, 2002. "An M/G/1 Retrial Queueing System with Two-Phase Service and Preemptive Resume," Annals of Operations Research, Springer, vol. 113(1), pages 61-79, July.
    3. Wang, Jinting & Liu, Bin & Li, Jianghua, 2008. "Transient analysis of an M/G/1 retrial queue subject to disasters and server failures," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1118-1132, September.
    4. Li, Hui & Yang, Tao, 1998. "Geo/G/1 discrete time retrial queue with Bernoulli schedule," European Journal of Operational Research, Elsevier, vol. 111(3), pages 629-649, December.
    5. I. Atencia & G. Bouza & P. Moreno, 2008. "An M [X] /G/1 retrial queue with server breakdowns and constant rate of repeated attempts," Annals of Operations Research, Springer, vol. 157(1), pages 225-243, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanga, Sudeep Singh & Jain, Madhu, 2019. "Cost optimization and ANFIS computing for admission control of M/M/1/K queue with general retrial times and discouragement," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    2. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    3. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    4. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    5. Legros, Benjamin, 2021. "Routing analyses for call centers with human and automated services," International Journal of Production Economics, Elsevier, vol. 240(C).
    6. Gao, Shan & Wang, Jinting, 2014. "Performance and reliability analysis of an M/G/1-G retrial queue with orbital search and non-persistent customers," European Journal of Operational Research, Elsevier, vol. 236(2), pages 561-572.
    7. Pedram Sahba & Bariş Balciog̃lu & Dragan Banjevic, 2013. "Analysis of the finite‐source multiclass priority queue with an unreliable server and setup time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 331-342, June.
    8. Efrosinin, Dmitry & Winkler, Anastasia, 2011. "Queueing system with a constant retrial rate, non-reliable server and threshold-based recovery," European Journal of Operational Research, Elsevier, vol. 210(3), pages 594-605, May.
    9. Shweta Upadhyaya, 2020. "Investigating a general service retrial queue with damaging and licensed units: an application in local area networks," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 716-745, September.
    10. Artalejo, Jesus R. & Economou, Antonis & Gómez-Corral, Antonio, 2008. "Algorithmic analysis of the Geo/Geo/c retrial queue," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1042-1056, September.
    11. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    12. Ioannis Dimitriou, 2013. "A preemptive resume priority retrial queue with state dependent arrivals, unreliable server and negative customers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 542-571, October.
    13. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Nobel, Rein & Moreno, Pilar, 2008. "A discrete-time retrial queueing model with one server," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1088-1103, September.
    15. Pedram Sahba & Barış Balcıog̃lu & Dragan Banjevic, 2022. "The impact of disruption characteristics on the performance of a server," Annals of Operations Research, Springer, vol. 317(1), pages 239-252, October.
    16. Ning Zhao & Zhaotong Lian & Kan Wu, 2015. "Analysis of a MAP/PH/1 Queue with Discretionary Priority Based on Service Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-22, December.
    17. P. Rajadurai & V. M. Chandrasekaran & M. C. Saravanarajan, 2016. "Analysis of an M[X]/G/1 unreliable retrial G-queue with orbital search and feedback under Bernoulli vacation schedule," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 197-223, March.
    18. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    19. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    20. Langaris, Christos & Dimitriou, Ioannis, 2010. "A queueing system with n-phases of service and (n-1)-types of retrial customers," European Journal of Operational Research, Elsevier, vol. 205(3), pages 638-649, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:247:y:2016:i:1:d:10.1007_s10479-015-1885-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.