IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v22y2014i2p509-529.html
   My bibliography  Save this article

A G/M/1 retrial queue with constant retrial rate

Author

Listed:
  • Chesoong Kim
  • Valentina Klimenok
  • Alexander Dudin

Abstract

In this paper, we are concerned with the analytical treatment of an GI/M/1 retrial queue with constant retrial rate. Constant retrial rate is typical for some real world systems where the intensity of individual retrials is inversely proportional to the number of customers in the orbit or only one customer from the orbit is allowed to make the retrials. In our model, a customer who finds the server busy joins the queue in the orbit in accordance with the FCFS (first-come-first-out) discipline and only the oldest customer in the queue is allowed to make the repeated attempts to reach the server. A distinguishing feature of the considered system is an arbitrary distribution of inter-arrival times, while the overwhelming majority of the papers is devoted to the retrial systems with the stationary Poisson arrival process. We carry out an extensive analytical analysis of the queue in steady state using the well-known matrix analytic technique. The ergodicity condition and simple expressions for the stationary distributions of the system states at pre-arrival, post-arrival and arbitrary times are derived. The important and difficult problem of finding the stationary distribution of the sojourn time is solved in terms of the Laplace–Stieltjes transform. Little’s formula is proved. Numerical illustrations are presented. Copyright Sociedad de Estadística e Investigación Operativa 2014

Suggested Citation

  • Chesoong Kim & Valentina Klimenok & Alexander Dudin, 2014. "A G/M/1 retrial queue with constant retrial rate," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 509-529, July.
  • Handle: RePEc:spr:topjnl:v:22:y:2014:i:2:p:509-529
    DOI: 10.1007/s11750-012-0267-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-012-0267-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-012-0267-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dudin, A. N. & Krishnamoorthy, A. & Joshua, V. C. & Tsarenkov, G. V., 2004. "Analysis of the BMAP/G/1 retrial system with search of customers from the orbit," European Journal of Operational Research, Elsevier, vol. 157(1), pages 169-179, August.
    2. A. Gómez-Corral, 2006. "A bibliographical guide to the analysis of retrial queues through matrix analytic techniques," Annals of Operations Research, Springer, vol. 141(1), pages 163-191, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Song & Zaiming Liu & Yiqiang Q. Zhao, 2016. "Exact tail asymptotics: revisit of a retrial queue with two input streams and two orbits," Annals of Operations Research, Springer, vol. 247(1), pages 97-120, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyes Ikhlef & Ouiza Lekadir & Djamil Aïssani, 2016. "MRSPN analysis of Semi-Markovian finite source retrial queues," Annals of Operations Research, Springer, vol. 247(1), pages 141-167, December.
    2. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    3. Gao, Shan & Wang, Jinting, 2014. "Performance and reliability analysis of an M/G/1-G retrial queue with orbital search and non-persistent customers," European Journal of Operational Research, Elsevier, vol. 236(2), pages 561-572.
    4. B. Krishna Kumar & R. Sankar & R. Navaneetha Krishnan & R. Rukmani, 2022. "Performance Analysis of Multi-processor Two-Stage Tandem Call Center Retrial Queues with Non-Reliable Processors," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 95-142, March.
    5. Kim, Chesoong & Klimenok, Valentina I. & Orlovsky, Dmitry S., 2008. "The BMAP/PH/N retrial queue with Markovian flow of breakdowns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1057-1072, September.
    6. Falin, G.I., 2010. "A single-server batch arrival queue with returning customers," European Journal of Operational Research, Elsevier, vol. 201(3), pages 786-790, March.
    7. Efrosinin, Dmitry & Winkler, Anastasia, 2011. "Queueing system with a constant retrial rate, non-reliable server and threshold-based recovery," European Journal of Operational Research, Elsevier, vol. 210(3), pages 594-605, May.
    8. T. Deepak, 2015. "On a retrial queueing model with single/batch service and search of customers from the orbit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 493-520, July.
    9. Valentina I. Klimenok & Alexander N. Dudin & Vladimir M. Vishnevsky & Olga V. Semenova, 2022. "Retrial BMAP / PH / N Queueing System with a Threshold-Dependent Inter-Retrial Time Distribution," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    10. C. D’Apice & A. N. Dudin & O. S. Dudina & R. Manzo, 2024. "Analysis of Queueing System with Dynamic Rating-Dependent Arrival Process and Price of Service," Mathematics, MDPI, vol. 12(7), pages 1-20, April.
    11. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    12. Artalejo, J.R. & Economou, A. & Lopez-Herrero, M.J., 2007. "Algorithmic approximations for the busy period distribution of the M/M/c retrial queue," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1687-1702, February.
    13. Ke, Jau-Chuan & Huang, Hsin-I & Lin, Chuen-Horng, 2007. "On retrial queueing model with fuzzy parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 272-280.
    14. Che Kim & Vilena Mushko & Alexander Dudin, 2012. "Computation of the steady state distribution for multi-server retrial queues with phase type service process," Annals of Operations Research, Springer, vol. 201(1), pages 307-323, December.
    15. Tuan Phung-Duc & Hiroyuki Masuyama & Shoji Kasahara & Yutaka Takahashi, 2013. "A matrix continued fraction approach to multiserver retrial queues," Annals of Operations Research, Springer, vol. 202(1), pages 161-183, January.
    16. N. Nithya & N. Anbazhagan & S. Amutha & Gyanendra Prasad Joshi, 2024. "A perspective analysis of obligatory vacation and retention of impatient purchaser on queueing-inventory with retrial policy," Operational Research, Springer, vol. 24(3), pages 1-25, September.
    17. Anastasia Winkler, 2013. "Dynamic scheduling of a single-server two-class queue with constant retrial policy," Annals of Operations Research, Springer, vol. 202(1), pages 197-210, January.
    18. Alexander N. Dudin & Sergey A. Dudin & Valentina I. Klimenok & Olga S. Dudina, 2024. "Stability of Queueing Systems with Impatience, Balking and Non-Persistence of Customers," Mathematics, MDPI, vol. 12(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:22:y:2014:i:2:p:509-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.