IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p1057-1072.html
   My bibliography  Save this article

The BMAP/PH/N retrial queue with Markovian flow of breakdowns

Author

Listed:
  • Kim, Chesoong
  • Klimenok, Valentina I.
  • Orlovsky, Dmitry S.

Abstract

We consider a multi-server retrial queue with the Batch Markovian Arrival Process (BMAP). The servers are identical and independent of each other. The service time distribution of a customer by a server is of the phase (PH) type. If a group of primary calls meets idle servers the primary calls occupy the corresponding number of servers. If the number of idle servers is insufficient the rest of calls go to the orbit of unlimited size and repeat their attempts to get service after exponential amount of time independently of each other. Busy servers are subject to breakdowns and repairs. The common flow of breakdowns is the MAP. An event of this flow causes a failure of any busy server with equal probability. When a server fails the repair period starts immediately. This period has PH type distribution and does not depend on the repair time of other broken-down servers and the service time of customers occupying the working servers. A customer whose service was interrupted goes to the orbit with some probability and leaves the system with the supplementary probability. We derive the ergodicity condition and calculate the stationary distribution and the main performance characteristics of the system. Illustrative numerical examples are presented.

Suggested Citation

  • Kim, Chesoong & Klimenok, Valentina I. & Orlovsky, Dmitry S., 2008. "The BMAP/PH/N retrial queue with Markovian flow of breakdowns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1057-1072, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1057-1072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00520-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Gómez-Corral, 2006. "A bibliographical guide to the analysis of retrial queues through matrix analytic techniques," Annals of Operations Research, Springer, vol. 141(1), pages 163-191, January.
    2. Quan-Lin Li & Yu Ying & Yiqiang Zhao, 2006. "A BMAP/G/1 Retrial Queue with a Server Subject to Breakdowns and Repairs," Annals of Operations Research, Springer, vol. 141(1), pages 233-270, January.
    3. J. Artalejo, 1999. "A classified bibliography of research on retrial queues: Progress in 1990–1999," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 187-211, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Krishnamoorthy & P. Pramod & S. Chakravarthy, 2014. "Queues with interruptions: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 290-320, April.
    2. Joanna Rodríguez & Rosa E. Lillo & Pepa Ramírez-Cobo, 2016. "Nonidentifiability of the Two-State BMAP," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 81-106, March.
    3. Alexander Dudin & Olga Dudina & Sergei Dudin & Konstantin Samouylov, 2021. "Analysis of Multi-Server Queue with Self-Sustained Servers," Mathematics, MDPI, vol. 9(17), pages 1-18, September.
    4. Falin, G.I., 2010. "A single-server batch arrival queue with returning customers," European Journal of Operational Research, Elsevier, vol. 201(3), pages 786-790, March.
    5. Kim, Chesoong & Klimenok, V.I. & Dudin, A.N., 2017. "Analysis of unreliable BMAP/PH/N type queue with Markovian flow of breakdowns," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 154-172.
    6. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    2. Efrosinin, Dmitry & Winkler, Anastasia, 2011. "Queueing system with a constant retrial rate, non-reliable server and threshold-based recovery," European Journal of Operational Research, Elsevier, vol. 210(3), pages 594-605, May.
    3. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    4. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    5. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    6. Anastasia Winkler, 2013. "Dynamic scheduling of a single-server two-class queue with constant retrial policy," Annals of Operations Research, Springer, vol. 202(1), pages 197-210, January.
    7. Sanga, Sudeep Singh & Jain, Madhu, 2019. "Cost optimization and ANFIS computing for admission control of M/M/1/K queue with general retrial times and discouragement," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    8. Chesoong Kim & Valentina Klimenok & Alexander Dudin, 2014. "A G/M/1 retrial queue with constant retrial rate," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 509-529, July.
    9. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    10. Baoliang Liu & Lirong Cui & Yanqing Wen, 2014. "Interval reliability for aggregated Markov repairable system with repair time omission," Annals of Operations Research, Springer, vol. 212(1), pages 169-183, January.
    11. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    12. Bin Liu & Jie Min & Yiqiang Q. Zhao, 2023. "Refined tail asymptotic properties for the $$M^X/G/1$$ M X / G / 1 retrial queue," Queueing Systems: Theory and Applications, Springer, vol. 104(1), pages 65-105, June.
    13. Gao, Shan & Wang, Jinting, 2014. "Performance and reliability analysis of an M/G/1-G retrial queue with orbital search and non-persistent customers," European Journal of Operational Research, Elsevier, vol. 236(2), pages 561-572.
    14. B. Krishna Kumar & R. Sankar & R. Navaneetha Krishnan & R. Rukmani, 2022. "Performance Analysis of Multi-processor Two-Stage Tandem Call Center Retrial Queues with Non-Reliable Processors," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 95-142, March.
    15. Wang, Jinting & Liu, Bin & Li, Jianghua, 2008. "Transient analysis of an M/G/1 retrial queue subject to disasters and server failures," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1118-1132, September.
    16. Falin, G.I., 2010. "A single-server batch arrival queue with returning customers," European Journal of Operational Research, Elsevier, vol. 201(3), pages 786-790, March.
    17. T. Deepak, 2015. "On a retrial queueing model with single/batch service and search of customers from the orbit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 493-520, July.
    18. Valentina I. Klimenok & Alexander N. Dudin & Vladimir M. Vishnevsky & Olga V. Semenova, 2022. "Retrial BMAP / PH / N Queueing System with a Threshold-Dependent Inter-Retrial Time Distribution," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    19. Rami Atar & Anat Lev-Ari, 2018. "Optimizing buffer size for the retrial queue: two state space collapse results in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 90(3), pages 225-255, December.
    20. Sujit Kumar Samanta & Kousik Das, 2023. "Detailed Analytical and Computational Studies of D-BMAP/D-BMSP/1 Queueing System," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-37, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1057-1072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.