IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v157y2008i1p225-24310.1007-s10479-007-0192-2.html
   My bibliography  Save this article

An M [X] /G/1 retrial queue with server breakdowns and constant rate of repeated attempts

Author

Listed:
  • I. Atencia
  • G. Bouza
  • P. Moreno

Abstract

We consider an M [X] /G/1 retrial queue subject to breakdowns where the retrial time is exponential and independent of the number of customers applying for service. If a coming batch of customers finds the server idle, one of the arriving customers begins his service immediately and the rest joins a retrial group (called orbit) to repeat his request later; otherwise, if the server is busy or down, all customers of the coming batch enter the orbit. It is assumed that the server has a constant failure rate and arbitrary repair time distribution. We study the ergodicity of the embedded Markov chain, its stationary distribution and the joint distribution of the server state and the orbit size in steady-state. The orbit and system size distributions are obtained as well as some performance measures of the system. The stochastic decomposition property and the asymptotic behavior under high rate of retrials are discussed. We also analyse some reliability problems, the k-busy period and the ordinary busy period of our retrial queue. Besides, we give a recursive scheme to compute the distribution of the number of served customers during the k-busy period and the ordinary busy period. The effects of several parameters on the system are analysed numerically. Copyright Springer Science+Business Media, LLC 2008

Suggested Citation

  • I. Atencia & G. Bouza & P. Moreno, 2008. "An M [X] /G/1 retrial queue with server breakdowns and constant rate of repeated attempts," Annals of Operations Research, Springer, vol. 157(1), pages 225-243, January.
  • Handle: RePEc:spr:annopr:v:157:y:2008:i:1:p:225-243:10.1007/s10479-007-0192-2
    DOI: 10.1007/s10479-007-0192-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-007-0192-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-007-0192-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Artalejo & J. Falin, 1994. "Stochastic decomposition for retrial queues," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(2), pages 329-342, December.
    2. S. W. Fuhrmann & Robert B. Cooper, 1985. "Stochastic Decompositions in the M / G /1 Queue with Generalized Vacations," Operations Research, INFORMS, vol. 33(5), pages 1117-1129, October.
    3. J. George Shanthikumar, 1988. "On Stochastic Decomposition in M / G /1 Type Queues with Generalized Server Vacations," Operations Research, INFORMS, vol. 36(4), pages 566-569, August.
    4. J. Artalejo, 1999. "A classified bibliography of research on retrial queues: Progress in 1990–1999," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 187-211, December.
    5. B. Avi-Itzhak & P. Naor, 1963. "Some Queuing Problems with the Service Station Subject to Breakdown," Operations Research, INFORMS, vol. 11(3), pages 303-320, June.
    6. A. G. Pakes, 1969. "Some Conditions for Ergodicity and Recurrence of Markov Chains," Operations Research, INFORMS, vol. 17(6), pages 1058-1061, December.
    7. J.R. Artalejo & M.J Lopez‐Herrero, 2000. "On the busy period of the M/G/1 retrial queue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 115-127, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    2. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    3. Amita Bhagat & Madhu Jain, 2020. "Retrial queue with multiple repairs, multiple services and non preemptive priority," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 787-814, September.
    4. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    5. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    6. Pedram Sahba & Barış Balcıog̃lu & Dragan Banjevic, 2022. "The impact of disruption characteristics on the performance of a server," Annals of Operations Research, Springer, vol. 317(1), pages 239-252, October.
    7. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    8. Shan Gao & Jinting Wang & Tien Van Do, 2016. "A repairable retrial queue under Bernoulli schedule and general retrial policy," Annals of Operations Research, Springer, vol. 247(1), pages 169-192, December.
    9. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    10. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    11. Pedram Sahba & Bariş Balciog̃lu & Dragan Banjevic, 2013. "Analysis of the finite‐source multiclass priority queue with an unreliable server and setup time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 331-342, June.
    12. Efrosinin, Dmitry & Winkler, Anastasia, 2011. "Queueing system with a constant retrial rate, non-reliable server and threshold-based recovery," European Journal of Operational Research, Elsevier, vol. 210(3), pages 594-605, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    2. Ioannis Dimitriou, 2013. "A preemptive resume priority retrial queue with state dependent arrivals, unreliable server and negative customers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 542-571, October.
    3. Atencia, I., 2017. "A Geo/G/1 retrial queueing system with priority services," European Journal of Operational Research, Elsevier, vol. 256(1), pages 178-186.
    4. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    5. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    6. Jianjun Li & Liwei Liu & Tao Jiang, 2018. "Analysis of an M/G/1 queue with vacations and multiple phases of operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 51-72, February.
    7. I. Atencia & P. Moreno, 2006. "A Discrete-Time Geo/ G/1 retrial queue with the server subject to starting failures," Annals of Operations Research, Springer, vol. 141(1), pages 85-107, January.
    8. Shweta Upadhyaya, 2020. "Investigating a general service retrial queue with damaging and licensed units: an application in local area networks," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 716-745, September.
    9. T. Deepak, 2015. "On a retrial queueing model with single/batch service and search of customers from the orbit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 493-520, July.
    10. Ivan Atencia & José Luis Galán-García, 2021. "Sojourn Times in a Queueing System with Breakdowns and General Retrial Times," Mathematics, MDPI, vol. 9(22), pages 1-25, November.
    11. V. Jailaxmi & R. Arumuganathan & M. Senthil Kumar, 2017. "Performance analysis of an M/G/1 retrial queue with general retrial time, modified M-vacations and collision," Operational Research, Springer, vol. 17(2), pages 649-667, July.
    12. Renbin Liu & Attahiru Sule Alfa & Miaomiao Yu, 2019. "Analysis of an ND-policy Geo/G/1 queue and its application to wireless sensor networks," Operational Research, Springer, vol. 19(2), pages 449-477, June.
    13. P. Rajadurai & V. M. Chandrasekaran & M. C. Saravanarajan, 2016. "Analysis of an M[X]/G/1 unreliable retrial G-queue with orbital search and feedback under Bernoulli vacation schedule," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 197-223, March.
    14. Cai-Min Wei & Li Cai & Jian-Jun Wang, 2016. "A discrete-time Geom/G/1 retrial queue with balking customers and second optional service," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 344-357, June.
    15. Özgecan Ulusçu & Tayfur Altiok, 2013. "Waiting time approximation in multi-class queueing systems with multiple types of class-dependent interruptions," Annals of Operations Research, Springer, vol. 202(1), pages 185-195, January.
    16. Sanga, Sudeep Singh & Jain, Madhu, 2019. "Cost optimization and ANFIS computing for admission control of M/M/1/K queue with general retrial times and discouragement," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    17. Dimitris Bertsimas & José Niño-Mora, 1996. "Optimization of multiclass queueing networks with changeover times via the achievable region method: Part II, the multi-station case," Economics Working Papers 314, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 1998.
    18. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    19. Dimitris Bertsimas & José Niño-Mora, 1999. "Optimization of Multiclass Queueing Networks with Changeover Times Via the Achievable Region Approach: Part I, The Single-Station Case," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 306-330, May.
    20. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:157:y:2008:i:1:p:225-243:10.1007/s10479-007-0192-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.