IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v78y2013i1p134-153.html
   My bibliography  Save this article

Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators

Author

Listed:
  • Alexander Weissman

Abstract

Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by interpreting the EM algorithm as alternating minimization of the Kullback–Leibler divergence between two convex sets. It is shown that these conditions are satisfied by an unconstrained latent class model, yielding an optimal bound against which more highly constrained models may be compared. Copyright The Psychometric Society 2013

Suggested Citation

  • Alexander Weissman, 2013. "Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 134-153, January.
  • Handle: RePEc:spr:psycho:v:78:y:2013:i:1:p:134-153
    DOI: 10.1007/s11336-012-9295-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-012-9295-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-012-9295-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    2. Roger Wets, 1999. "Statistical estimation from an optimization viewpoint," Annals of Operations Research, Springer, vol. 85(0), pages 79-101, January.
    3. K. Humphreys & D. Titterington, 2003. "Variational approximations for categorical causal modeling with latent variables," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 391-412, September.
    4. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    5. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Weissman, 2013. "Optimizing information using the EM algorithm in item response theory," Annals of Operations Research, Springer, vol. 206(1), pages 627-646, July.
    2. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    3. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    4. Frank Rijmen & Minjeong Jeon, 2013. "Fitting an item response theory model with random item effects across groups by a variational approximation method," Annals of Operations Research, Springer, vol. 206(1), pages 647-662, July.
    5. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    6. Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.
    7. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    8. Peida Zhan & Xin Qiao, 2022. "DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1529-1547, December.
    9. Taha Hannachi & Sonya Yakimova & Alain Somat, 2024. "A Follow up on the Continuum Theory of Eco-Anxiety: Analysis of the Climate Change Anxiety Scale Using Item Response Theory among French Speaking Population," IJERPH, MDPI, vol. 21(9), pages 1-16, August.
    10. Shing-On Leung, 2008. "A Three-Dimensional Latent Variable Model for Attitude Scales," Sociological Methods & Research, , vol. 37(1), pages 135-154, August.
    11. Silvia Cagnone & Paola Monari, 2013. "Latent variable models for ordinal data by using the adaptive quadrature approximation," Computational Statistics, Springer, vol. 28(2), pages 597-619, April.
    12. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    13. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    14. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    15. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    16. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    17. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    18. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    19. Carolina Navarro & Luis Ayala & José Labeaga, 2010. "Housing deprivation and health status: evidence from Spain," Empirical Economics, Springer, vol. 38(3), pages 555-582, June.
    20. Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:78:y:2013:i:1:p:134-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.