IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v169y2009i1p81-9110.1007-s10479-008-0479-y.html
   My bibliography  Save this article

Scheduling unit time jobs with integer release dates to minimize the weighted number of tardy jobs

Author

Listed:
  • Mitre Dourado
  • Rosiane Rodrigues
  • Jayme Szwarcfiter

Abstract

Consider a set of n unit time jobs, each one having a release date, a due date, both nonnegative integers, and a weight, a positive real number. Given a set of m parallel machines, we describe an algorithm for finding schedules with minimum weighted number of tardy jobs. The complexity of the proposed algorithm is $O(n^{2}\frac{(1+\log m)}{m})$ . The best previous algorithm for this problem has complexity O(mn 3 ) and employs network flow techniques. Our method is based on a characterization for schedules of this type and employs graph theoretic tools. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Mitre Dourado & Rosiane Rodrigues & Jayme Szwarcfiter, 2009. "Scheduling unit time jobs with integer release dates to minimize the weighted number of tardy jobs," Annals of Operations Research, Springer, vol. 169(1), pages 81-91, July.
  • Handle: RePEc:spr:annopr:v:169:y:2009:i:1:p:81-91:10.1007/s10479-008-0479-y
    DOI: 10.1007/s10479-008-0479-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0479-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0479-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    2. Peter Brucker & Natalia V. Shakhlevich, 2016. "Necessary and sufficient optimality conditions for scheduling unit time jobs on identical parallel machines," Journal of Scheduling, Springer, vol. 19(6), pages 659-685, December.
    3. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willem E. de Paepe & Jan Karel Lenstra & Jiri Sgall & René A. Sitters & Leen Stougie, 2004. "Computer-Aided Complexity Classification of Dial-a-Ride Problems," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 120-132, May.
    2. Huynh Tuong, Nguyen & Soukhal, Ameur & Billaut, Jean-Charles, 2010. "A new dynamic programming formulation for scheduling independent tasks with common due date on parallel machines," European Journal of Operational Research, Elsevier, vol. 202(3), pages 646-653, May.
    3. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    4. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    5. Zhi-Long Chen & Nicholas G. Hall, 2010. "The Coordination of Pricing and Scheduling Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 77-92, April.
    6. Imed Kacem & Hans Kellerer & Yann Lanuel, 2015. "Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 403-412, October.
    7. Ji, Min & He, Yong & Cheng, T.C.E., 2007. "Batch delivery scheduling with batch delivery cost on a single machine," European Journal of Operational Research, Elsevier, vol. 176(2), pages 745-755, January.
    8. Tom Demeulemeester & Dries Goossens & Ben Hermans & Roel Leus, 2023. "Fair integer programming under dichotomous and cardinal preferences," Papers 2306.13383, arXiv.org, revised Apr 2024.
    9. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    10. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    11. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2013. "Single machine total tardiness maximization problems: complexity and algorithms," Annals of Operations Research, Springer, vol. 207(1), pages 121-136, August.
    12. Briskorn, Dirk & Davari, Morteza & Matuschke, Jannik, 2021. "Single-machine scheduling with an external resource," European Journal of Operational Research, Elsevier, vol. 293(2), pages 457-468.
    13. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    14. Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
    15. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2012. "Transforming a pseudo-polynomial algorithm for the single machine total tardiness maximization problem into a polynomial one," Annals of Operations Research, Springer, vol. 196(1), pages 247-261, July.
    16. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    17. Gerhard J. Woeginger, 2000. "When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 57-74, February.
    18. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    19. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
    20. Vincent T’kindt & Federico Della Croce & Jean-Louis Bouquard, 2007. "Enumeration of Pareto Optima for a Flowshop Scheduling Problem with Two Criteria," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 64-72, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:169:y:2009:i:1:p:81-91:10.1007/s10479-008-0479-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.