IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v19y2016i6d10.1007_s10951-016-0471-3.html
   My bibliography  Save this article

Necessary and sufficient optimality conditions for scheduling unit time jobs on identical parallel machines

Author

Listed:
  • Peter Brucker

    (Universität Osnabrück)

  • Natalia V. Shakhlevich

    (University of Leeds)

Abstract

In this paper we characterize optimal schedules for scheduling problems with parallel machines and unit processing times by providing necessary and sufficient conditions of optimality. We show that the optimality conditions for parallel machine scheduling are equivalent to detecting negative cycles in a specially defined graph. For a range of the objective functions, we give an insight into the underlying structure of the graph and specify the simplest types of cycles involved in the optimality conditions. Using our results we demonstrate that the optimality check can be performed by faster algorithms in comparison with existing approaches based on sufficient conditions.

Suggested Citation

  • Peter Brucker & Natalia V. Shakhlevich, 2016. "Necessary and sufficient optimality conditions for scheduling unit time jobs on identical parallel machines," Journal of Scheduling, Springer, vol. 19(6), pages 659-685, December.
  • Handle: RePEc:spr:jsched:v:19:y:2016:i:6:d:10.1007_s10951-016-0471-3
    DOI: 10.1007/s10951-016-0471-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-016-0471-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-016-0471-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.I. Dessouky & B.J. Lageweg & J.K. Lenstra & S.L. van de Velde, 1990. "Scheduling identical jobs on uniform parallel machines," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 44(3), pages 115-123, September.
    2. Lin, Yixun & Wang, Xiumei, 2007. "Necessary and sufficient conditions of optimality for some classical scheduling problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 809-818, January.
    3. Mitre Dourado & Rosiane Rodrigues & Jayme Szwarcfiter, 2009. "Scheduling unit time jobs with integer release dates to minimize the weighted number of tardy jobs," Annals of Operations Research, Springer, vol. 169(1), pages 81-91, July.
    4. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijun Xu & Dehua Xu, 2018. "Single-machine scheduling with workload-dependent tool change durations and equal processing time jobs to minimize total completion time," Journal of Scheduling, Springer, vol. 21(4), pages 461-482, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    2. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    3. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    4. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
    5. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    6. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    7. Janiak, Adam & Krysiak, Tomasz & Pappis, Costas P. & Voutsinas, Theodore G., 2009. "A scheduling problem with job values given as a power function of their completion times," European Journal of Operational Research, Elsevier, vol. 193(3), pages 836-848, March.
    8. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    9. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    10. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    11. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    12. Vincent Mousseau & Özgür Özpeynirci & Selin Özpeynirci, 2018. "Inverse multiple criteria sorting problem," Annals of Operations Research, Springer, vol. 267(1), pages 379-412, August.
    13. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    14. T. R. Wang & N. Pedroni & E. Zio & V. Mousseau, 2020. "Identification of Protective Actions to Reduce the Vulnerability of Safety‐Critical Systems to Malevolent Intentional Acts: An Optimization‐Based Decision‐Making Approach," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 565-587, March.
    15. Lili Zhang & Wenhao Guo, 2023. "Inverse Optimization Method for Safety Resource Allocation and Inferring Cost Coefficient Based on a Benchmark," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    16. Xianyue Li & Zhao Zhang & Ding-Zhu Du, 2018. "Partial inverse maximum spanning tree in which weight can only be decreased under $$l_p$$ l p -norm," Journal of Global Optimization, Springer, vol. 70(3), pages 677-685, March.
    17. Elisabeth Gassner, 2008. "The inverse 1-maxian problem with edge length modification," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 50-67, July.
    18. Mintz, Yonatan & Aswani, Anil & Kaminsky, Philip & Flowers, Elena & Fukuoka, Yoshimi, 2023. "Behavioral analytics for myopic agents," European Journal of Operational Research, Elsevier, vol. 310(2), pages 793-811.
    19. András Kovács, 2021. "Inverse optimization approach to the identification of electricity consumer models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 521-537, June.
    20. Longcheng Liu & Jianzhong Zhang, 2006. "Inverse maximum flow problems under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 395-408, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:19:y:2016:i:6:d:10.1007_s10951-016-0471-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.