IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9474-d878399.html
   My bibliography  Save this article

A Practical and Sustainable Approach to Determining the Deployment Priorities of Automatic Vehicle Identification Sensors

Author

Listed:
  • Dongya Li

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Wei Wang

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • De Zhao

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

Abstract

Monitoring vehicles’ paths is important for the management and governance of smart sustainable cities, where traffic sensors play a significant role. As a typical sensor, an automatic vehicle identification (AVI) sensor can observe the whereabouts and movements of vehicles. In this article, we introduced an indicator called the deployment score to present the deployment priorities of AVIs for a better reconstruction of vehicles’ paths. The deployment score was obtained based on a programming method for maximizing the accuracy of a recurring vehicle’s path and minimizing the number of AVI sensors. The calculation process is data-driven, where a random-work method was developed to simulate massive path data (tracks of vehicles) according to travel characteristics extracted from finite GPS data. Then, for each simulated path, a path-level bi-level programming model (P-BPM) was constructed to find the optimal layout of the AVI sensors. The solutions of the P-BPM proved to be approximate Pareto optima from a data-driven perspective. Furthermore, the PageRank method was presented to integrate the solutions; thus, the deployment score was obtained. The proposed method was validated in Chengdu City, whose results demonstrated the remarkable value of our approach.

Suggested Citation

  • Dongya Li & Wei Wang & De Zhao, 2022. "A Practical and Sustainable Approach to Determining the Deployment Priorities of Automatic Vehicle Identification Sensors," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9474-:d:878399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    3. Hui Chen & Zhaoming Chu & Chao Sun, 2021. "Sensor Deployment Strategy and Traffic Demand Estimation with Multisource Data," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    4. Lucio Bianco & Giuseppe Confessore & Monica Gentili, 2006. "Combinatorial aspects of the sensor location problem," Annals of Operations Research, Springer, vol. 144(1), pages 201-234, April.
    5. Zhu, Ning & Fu, Chenyi & Zhang, Xuanyi & Ma, Shoufeng, 2022. "A network sensor location problem for link flow observability and estimation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 428-448.
    6. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    7. J. Benders, 2005. "Partitioning procedures for solving mixed-variables programming problems," Computational Management Science, Springer, vol. 2(1), pages 3-19, January.
    8. Alves, Maria João & Henggeler Antunes, Carlos, 2022. "A new exact method for linear bilevel problems with multiple objective functions at the lower level," European Journal of Operational Research, Elsevier, vol. 303(1), pages 312-327.
    9. M. Gentili & P. Mirchandani, 2005. "Locating Active Sensors on Traffic Networks," Annals of Operations Research, Springer, vol. 136(1), pages 229-257, April.
    10. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiming Li & Zeyang Cheng & Xinpeng Yao & Zhiqiang Kong & Zijian Wang & Mengfei Liu, 2023. "Multi-Objective Optimal Deployment of Road Traffic Monitoring Cameras: A Case Study in Wujiang, China," Sustainability, MDPI, vol. 15(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng, 2017. "A stochastic program approach for path reconstruction oriented sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 210-237.
    2. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    3. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    5. Yu, Xinyao & Ma, Shoufeng & Zhu, Ning & Lam, William H.K. & Fu, Hao, 2023. "Ensuring the robustness of link flow observation systems in sensor failure events," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    6. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    7. Hu, Shou-Ren & Peeta, Srinivas & Chu, Chun-Hsiao, 2009. "Identification of vehicle sensor locations for link-based network traffic applications," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 873-894, September.
    8. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    9. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    10. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    11. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    12. Beraldi, Patrizia & Ruszczynski, Andrzej, 2005. "Beam search heuristic to solve stochastic integer problems under probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 167(1), pages 35-47, November.
    13. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    14. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    15. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    16. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    17. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    18. Enrique Castillo & Pilar Jiménez & José Menéndez & María Nogal, 2013. "A Bayesian method for estimating traffic flows based on plate scanning," Transportation, Springer, vol. 40(1), pages 173-201, January.
    19. Shahparvari, Shahrooz & Abbasi, Babak & Chhetri, Prem, 2017. "Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: An Australian case study," Omega, Elsevier, vol. 72(C), pages 96-117.
    20. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Reliable sensor deployment for network traffic surveillance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 218-231, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9474-:d:878399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.