IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v69y2017i1d10.1007_s10463-015-0538-5.html
   My bibliography  Save this article

Composite change point estimation for bent line quantile regression

Author

Listed:
  • Liwen Zhang

    (Shanghai University)

  • Huixia Judy Wang

    (George Washington University)

  • Zhongyi Zhu

    (Fudan University)

Abstract

The bent line quantile regression describes the situation where the conditional quantile function of the response is piecewise linear but still continuous in covariates. In some applications, the change points at which the quantile functions are bent tend to be the same across quantile levels or for quantile levels lying in a certain region. To capture such commonality, we propose a composite estimation procedure to estimate model parameters and the common change point by combining information across quantiles. We establish the asymptotic properties of the proposed estimator, and demonstrate the efficiency gain of the composite change point estimator over that obtained at a single quantile level through numerical studies. In addition, three different inference procedures are proposed and compared for hypothesis testing and the construction of confidence intervals. The finite sample performance of the proposed procedures is assessed through a simulation study and the analysis of a real data.

Suggested Citation

  • Liwen Zhang & Huixia Judy Wang & Zhongyi Zhu, 2017. "Composite change point estimation for bent line quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 145-168, February.
  • Handle: RePEc:spr:aistmt:v:69:y:2017:i:1:d:10.1007_s10463-015-0538-5
    DOI: 10.1007/s10463-015-0538-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-015-0538-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-015-0538-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    2. Su, Liangjun & Xiao, Zhijie, 2008. "Testing for parameter stability in quantile regression models," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2768-2775, November.
    3. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    4. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69, January.
    5. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
    6. Chenxi Li & Ying Wei & Rick Chappell & Xuming He, 2011. "Bent Line Quantile Regression with Application to an Allometric Study of Land Mammals' Speed and Mass," Biometrics, The International Biometric Society, vol. 67(1), pages 242-249, March.
    7. Wang, Huixia & He, Xuming, 2007. "Detecting Differential Expressions in GeneChip Microarray Studies: A Quantile Approach," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 104-112, March.
    8. Holger Dette & Stanislav Volgushev, 2008. "Non‐crossing non‐parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627, July.
    9. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Antonio Galvao & Kengo Kato & Gabriel Montes-Rojas & Jose Olmo, 2014. "Testing linearity against threshold effects: uniform inference in quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 413-439, April.
    12. Fiteni, Inmaculada, 2004. "[tau]-estimators of regression models with structural change of unknown location," Journal of Econometrics, Elsevier, vol. 119(1), pages 19-44, March.
    13. Koenker, Roger, 1984. "A note on L-estimates for linear models," Statistics & Probability Letters, Elsevier, vol. 2(6), pages 323-325, December.
    14. Lee, Sokbae & Seo, Myung Hwan & Shin, Youngki, 2011. "Testing for Threshold Effects in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 220-231.
    15. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Yu & Ting Li & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Composite quantile estimation in partial functional linear regression model with dependent errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 633-656, August.
    2. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    2. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    3. Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
    4. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    5. Zhou, Mi & Wang, Huixia Judy & Tang, Yanlin, 2015. "Sequential change point detection in linear quantile regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 98-103.
    6. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    7. Xenxo Vidal-Llana & Carlos Salort Sánchez & Vincenzo Coia & Montserrat Guillen, 2022. ""Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions"," IREA Working Papers 202215, University of Barcelona, Research Institute of Applied Economics, revised Oct 2022.
    8. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Karthik Sriram & R. V. Ramamoorthi & Pulak Ghosh, 2016. "On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 87-104, February.
    10. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    11. Chung-Ming Kuan & Christos Michalopoulos & Zhijie Xiao, 2017. "Quantile Regression on Quantile Ranges – A Threshold Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 99-119, January.
    12. Dai, Sheng & Kuosmanen, Timo & Zhou, Xun, 2023. "Non-crossing convex quantile regression," Economics Letters, Elsevier, vol. 233(C).
    13. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    14. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    15. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    16. Christian Bauer & Sebastian Weber, 2016. "The Efficiency of Monetary Policy when Guiding Inflation Expectations," Research Papers in Economics 2016-14, University of Trier, Department of Economics.
    17. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.
    18. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    19. R H Spady & S Stouli, 2018. "Dual regression," Biometrika, Biometrika Trust, vol. 105(1), pages 1-18.
    20. Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2022. "Jiang, Zhao and Shao's reply to the Discussion of ‘The First Discussion Meeting on Statistical Aspects of the Covid‐19 Pandemic’," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1849-1854, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:69:y:2017:i:1:d:10.1007_s10463-015-0538-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.