IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i8ne2696.html
   My bibliography  Save this article

Spatial cluster detection with threshold quantile regression

Author

Listed:
  • Junho Lee
  • Ying Sun
  • Huixia Judy Wang

Abstract

Spatial cluster detection, which is the identification of spatial units adjacent in space associated with distinctive patterns of data of interest relative to background variation, is useful for discerning spatial heterogeneity in regression coefficients. Some real studies with regression‐based models on air quality data show that there exists not only spatial heterogeneity but also heteroscedasticity between air pollution and its predictors. Since the low air quality is a well‐known risk factor for mortality, various cardiopulmonary diseases, and preterm birth, the analysis at the tail would be of more interest than the center of air pollution distribution. In this article, we develop a spatial cluster detection approach using a threshold quantile regression model to capture the spatial heterogeneity and heteroscedasticity. We introduce two threshold variables in the quantile regression model to define a spatial cluster. The proposed test statistic for identifying the spatial cluster is the supremum of the Wald process over the space of threshold parameters. We establish the limiting distribution of the test statistic under the null hypothesis that the quantile regression coefficient is the same over the entire spatial domain at the given quantile level. The performance of our proposed method is assessed by simulation studies. The proposed method is also applied to analyze the particulate matter (PM2.5) concentration and aerosol optical depth (AOD) data in the Northeastern United States in order to study geographical heterogeneity in the association between AOD and PM2.5 at different quantile levels.

Suggested Citation

  • Junho Lee & Ying Sun & Huixia Judy Wang, 2021. "Spatial cluster detection with threshold quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:8:n:e2696
    DOI: 10.1002/env.2696
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2696
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seo, Myung Hwan & Linton, Oliver, 2007. "A smoothed least squares estimator for threshold regression models," Journal of Econometrics, Elsevier, vol. 141(2), pages 704-735, December.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Yuzhi Cai, 2010. "Forecasting for quantile self-exciting threshold autoregressive time series models," Biometrika, Biometrika Trust, vol. 97(1), pages 199-208.
    5. Liangjun Su & Pai Xu, 2019. "Common threshold in quantile regressions with an application to pricing for reputation," Econometric Reviews, Taylor & Francis Journals, vol. 38(4), pages 417-450, April.
    6. Antonio Galvao & Kengo Kato & Gabriel Montes-Rojas & Jose Olmo, 2014. "Testing linearity against threshold effects: uniform inference in quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 413-439, April.
    7. Neal S. Grantham & Brian J. Reich & Yang Liu & Howard H. Chang, 2018. "Spatial regression with an informatively missing covariate: Application to mapping fine particulate matter," Environmetrics, John Wiley & Sons, Ltd., vol. 29(4), June.
    8. Ronald E. Gangnon & Murray K. Clayton, 2000. "Bayesian Detection and Modeling of Spatial Disease Clustering," Biometrics, The International Biometric Society, vol. 56(3), pages 922-935, September.
    9. Antonio F. Galvao Jr. & Gabriel Montes‐Rojas & Jose Olmo, 2011. "Threshold quantile autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 253-267, May.
    10. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    11. Takuma Yoshida, 2021. "Extreme value inference for quantile regression with varying coefficients," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(3), pages 685-710, February.
    12. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    13. Zheng, John Xu, 1998. "A Consistent Nonparametric Test Of Parametric Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 123-138, February.
    14. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    15. Junho Lee & Ying Sun & Howard H. Chang, 2020. "Spatial cluster detection of regression coefficients in a mixed‐effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 31(2), March.
    16. Caner, Mehmet, 2002. "A Note On Least Absolute Deviation Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 18(3), pages 800-814, June.
    17. Lee, Sokbae & Seo, Myung Hwan & Shin, Youngki, 2011. "Testing for Threshold Effects in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 220-231.
    18. Yuzhi Cai & Julian Stander, 2008. "Quantile self‐exciting threshold autoregressive time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 186-202, January.
    19. Ronald E. Gangnon, 2012. "Local Multiplicity Adjustment for the Spatial Scan Statistic Using the Gumbel Distribution," Biometrics, The International Biometric Society, vol. 68(1), pages 174-182, March.
    20. Daniel P. McMillen, 2013. "Quantile Regression for Spatial Data," SpringerBriefs in Regional Science, Springer, edition 127, number 978-3-642-31815-3.
    21. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tugce Pekdogan & Mihaela Tinca Udriștioiu & Silvia Puiu & Hasan Yildizhan & Martin Hruška, 2023. "A Multi-Country Statistical Analysis Covering Turkey, Slovakia, and Romania in an Educational Framework," Sustainability, MDPI, vol. 15(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Galvao & Kengo Kato & Gabriel Montes-Rojas & Jose Olmo, 2014. "Testing linearity against threshold effects: uniform inference in quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 413-439, April.
    2. Martins, Luis F., 2021. "The US debt–growth nexus along the business cycle," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    3. Chung-Ming Kuan & Christos Michalopoulos & Zhijie Xiao, 2017. "Quantile Regression on Quantile Ranges – A Threshold Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 99-119, January.
    4. Kato, Kengo, 2009. "Asymptotics for argmin processes: Convexity arguments," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1816-1829, September.
    5. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    6. Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
    7. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    8. Yu, Ping, 2015. "Adaptive estimation of the threshold point in threshold regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 83-100.
    9. Yan Sun & Wei Huang, 2024. "Estimation and testing of kink regression model with endogenous regressors," Computational Statistics, Springer, vol. 39(6), pages 3115-3135, September.
    10. Rothfelder, Mario & Boldea, Otilia, 2016. "Testing for a Threshold in Models with Endogenous Regressors," Discussion Paper 2016-029, Tilburg University, Center for Economic Research.
    11. Seo, Myung Hwan & Koo, Bonsoo & Yang, Yangzhuoran Fin, 2024. "Nonlinear dynamics of Kimchi premium," Economic Modelling, Elsevier, vol. 135(C).
    12. repec:cep:stiecm:/2014/577 is not listed on IDEAS
    13. Li, Dong & Tong, Howell, 2016. "Nested sub-sample search algorithm for estimation of threshold models," LSE Research Online Documents on Economics 68880, London School of Economics and Political Science, LSE Library.
    14. Bruce E. Hansen, 2017. "Regression Kink With an Unknown Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 228-240, April.
    15. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    16. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    17. Neil Foster-McGregor & Anders Isaksson & Florian Kaulich, 2013. "Importing, Productivity and Absorptive Capacity in Sub-Saharan African Manufacturing Firms," wiiw Working Papers 105, The Vienna Institute for International Economic Studies, wiiw.
    18. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    19. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    20. Donayre Luiggi & Eo Yunjong & Morley James, 2018. "Improving likelihood-ratio-based confidence intervals for threshold parameters in finite samples," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(1), pages 1-11, February.
    21. Correa, Arnildo da Silva & Minella, André, 2010. "Nonlinear mechanisms of the exchange rate pass-through: A Phillips curve model with threshold for Brazil," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 64(3), September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:8:n:e2696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.