IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v74y2006i2p539-563.html
   My bibliography  Save this article

Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure

Author

Listed:
  • Joshua Angrist
  • Victor Chernozhukov
  • Iván Fernández-Val

Abstract

Quantile regression (QR) fits a linear model for conditional quantiles just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it gives the minimum mean-squared error linear approximation to the conditional expectation function even when the linear model is misspecified. Empirical research using quantile regression with discrete covariates suggests that QR may have a similar property, but the exact nature of the linear approximation has remained elusive. In this paper, we show that QR minimizes a weighted mean-squared error loss function for specification error. The weighting function is an average density of the dependent variable near the true conditional quantile. The weighted least squares interpretation of QR is used to derive an omitted variables bias formula and a partial quantile regression concept, similar to the relationship between partial regression and OLS. We also present asymptotic theory for the QR process under misspecification of the conditional quantile function. The approximation properties of QR are illustrated using wage data from the U.S. census. These results point to major changes in inequality from 1990 to 2000. Copyright The Econometric Society 2006.

Suggested Citation

  • Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
  • Handle: RePEc:ecm:emetrp:v:74:y:2006:i:2:p:539-563
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2006.00671.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    2. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    3. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366, Elsevier.
    6. José A. F. Machado & José Mata, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465, May.
    7. Amanda Gosling & Stephen Machin & Costas Meghir, 2000. "The Changing Distribution of Male Wages in the U.K," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(4), pages 635-666.
    8. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    9. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, September.
    10. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    11. Hahn, Jinyong, 1997. "Bayesian Bootstrap of the Quantile Regression Estimator: A Large Sample Study," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(4), pages 795-808, November.
    12. Tae-Hwan Kim & Halbert White, 2003. "Estimation, Inference, And Specification Testing For Possibly Misspecified Quantile Regression," Advances in Econometrics, in: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, pages 107-132, Emerald Group Publishing Limited.
    13. Katz, Lawrence F. & Autor, David H., 1999. "Changes in the wage structure and earnings inequality," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 26, pages 1463-1555, Elsevier.
    14. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, September.
    15. White, Halbert, 1980. "Using Least Squares to Approximate Unknown Regression Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 149-170, February.
    16. Juhn, Chinhui & Murphy, Kevin M & Pierce, Brooks, 1993. "Wage Inequality and the Rise in Returns to Skill," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 410-442, June.
    17. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    18. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    3. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Dispersion estimation; Earnings risk; Censoring; Quantile regression; Occupational choice; Sorting; Risk preferences; SOEP; IABS," ECONtribute Discussion Papers Series 028, University of Bonn and University of Cologne, Germany.
    4. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    5. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    6. Michel Lubrano & Abdoul Aziz Junior Ndoye, 2014. "Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992–2009," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(2), pages 129-153, May.
    7. Qingjie Xia & Lina Song & Shi Li & Simon Appleton, 2014. "The effect of the state sector on wage inequality in urban China: 1988--2007," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(1), pages 29-45, February.
    8. Santiago Budria, 2010. "Schooling and the distribution of wages in the European private and public sectors," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 1045-1054.
    9. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    10. McMillen, Daniel P., 2008. "Changes in the distribution of house prices over time: Structural characteristics, neighborhood, or coefficients?," Journal of Urban Economics, Elsevier, vol. 64(3), pages 573-589, November.
    11. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    12. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly, 2022. "Fast algorithms for the quantile regression process," Empirical Economics, Springer, vol. 62(1), pages 7-33, January.
    13. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
    14. Sergio P. Firpo & Nicole M. Fortin & Thomas Lemieux, 2018. "Decomposing Wage Distributions Using Recentered Influence Function Regressions," Econometrics, MDPI, vol. 6(2), pages 1-40, May.
    15. Richard V. Burkhauser & Shuaizhang Feng & Stephen P. Jenkins, 2009. "Using The P90/P10 Index To Measure U.S. Inequality Trends With Current Population Survey Data: A View From Inside The Census Bureau Vaults," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(1), pages 166-185, March.
    16. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    17. de la Rica, Sara & Dolado, Juan J. & Llorens, Vanesa, 2005. "Ceiling and Floors: Gender Wage Gaps by Education in Spain," IZA Discussion Papers 1483, Institute of Labor Economics (IZA).
    18. Stahlschmidt, Stephan & Eckardt, Matthias & Härdle, Wolfgang Karl, 2014. "Expectile treatment effects: An efficient alternative to compute the distribution of treatment effects," SFB 649 Discussion Papers 2014-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    20. Juan Manuel del Pozo Segura, 2017. "Has the Gender Wage Gap been Reduced during the 'Peruvian Growth Miracle?' A Distributional Approach," Documentos de Trabajo / Working Papers 2017-442, Departamento de Economía - Pontificia Universidad Católica del Perú.

    More about this item

    JEL classification:

    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:74:y:2006:i:2:p:539-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.